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第1章 実数の連続性 I

定義や定理の条件として部分集合を考えるとき空 (= ∅)でないという前置きは省略す
ることがある. 次の形のR の部分集合を区間と呼ぶことにする.

• [a, b] = {x ∈ R; a ≤ x ≤ b}：閉区間

• (a, b) = {x ∈ R; a < x < b}：開区間

• [a, b) = {x ∈ R; a ≤ x < b} , (a, b] = {x ∈ R; a < x ≤ b}：半開区間

• [a,∞) = {x ∈ R; a ≤ x <∞} , (−∞, b] = {x ∈ R; −∞ < x ≤ b} ,
(a,∞) = {x ∈ R; a < x <∞} , (−∞, b) = {x ∈ R; −∞ < x < b}：無限区間

詳しくいう必要がある場合は区間の種類や形を具体的にかくことにする. また (a, b), [a, b]

の形の区間は有界であるとする.

最大数・最小数
最大数� �
部分集合 I ⊂ R とする. a ∈ R が I の最大数であるとは次の (1), (2) を満たすこと
をいう.

(1) a ∈ I.

(2) 任意の x ∈ I に対して x ≤ a.

最大数を a = max I とかく.� �
最小数� �
部分集合 I ⊂ R とする. a ∈ R が I の最小数であるとは次の (1), (2) を満たすこと
をいう.

(1) a ∈ I.

(2) 任意の x ∈ I に対して a ≤ x.

最小数を a = min I とかく.� �
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� �
例 1. 部分集合として区間 I = [0, 1] を考える. このとき x = 1 は 1 ∈ I を満たす.

さらに任意の x ∈ I に対して x ≤ 1 を満たすので 1 は最大数である. すなわち

1 = max I.

同様にして x = 0 は 0 ∈ I を満たし, 任意の x ∈ I に対して x ≥ 0 なので

0 = min I.� �babababababababababababababababababababab

区間 I = (0, 1) を考えると 1 6∈ I なので x = 1 は I の最大数ではない. 同様にし
て x = 0 も I の最小数ではない. I の最大数・最小数は存在しないが x = 0, 1 は
I において特徴的な数であることに変わりはない. この特徴に定義を与えてやる
ことで今後の議論が円滑に進むことがある. その特徴が後半で定義する上限・下
限である.

実数の連続性
実数の連続性について説明する.

デデキント切断� �
部分集合X ⊂ R に対してA 6= ∅, B 6= ∅ で

X = A ∪ B, A ∩B = ∅, a < b (a ∈ A, b ∈ B)

を満たすものをX の切断といい (A,B) とかく.� �
X = R を s ∈ R において (A,B) に切断することを考える. 切断の定義により

(a) A = (−∞, s], B = (s,∞).

(b) A = (−∞, s), B = [s,∞).

のどちらかになる. 逆に切断により s = maxA または s = minB が定まるというのがデ
デキントの公理である.
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デデキントの公理� �
X = R の切断 (A,B) により実数 s ∈ R が確定する. すなわち次の (a), (b) のいずれ
か一方が成り立つ.

(a) A = (−∞, s], B = (s,∞).

(b) A = (−∞, s), B = [s,∞).� �
この公理は実数の連続性に関する公理である. デデキントの公理を認めた上で解析学が
構築される*1.

上界・下界
U(I)と上界� �
I ⊂ R に対して U(I) を以下で定める.

U(I) = {a ∈ R; すべての x ∈ I に対して x ≤ a} .

a ∈ U(I) を I の上界であるという. U(I) 6= ∅ のとき I は上に有界であるという.� �
L(I)と下界� �
I ⊂ R に対して L(I) を以下で定める.

L(I) = {a ∈ R; すべての x ∈ I に対して a ≤ x} .

a ∈ L(I) を I の下界であるという. L(I) 6= ∅ のとき I は下に有界であるという.� �
I が上にも下にも有界であるとき単に有界であるという.� �
定理 1.

(1) 上に有界な I ⊂ R に対してminU(I) が存在する.

(2) 下に有界な I ⊂ R に対してmaxL(I) が存在する.� �
証明. (1) だけ示そう. 上に有界な I ⊂ R とする.

A = U(I)c = R \ U(I),
B = U(I)

*1いくつかの同値な命題が知られている. どれかを公理として採用したら他は定理として証明されるも
のである.
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とする. c ∈ I とすれば c− 1 6∈ U(I) なのでA 6= ∅ である. 任意の a ∈ A, b ∈ B とする
と a 6∈ U(I) だからm ∈ I が存在して

a < m

が成り立つ*2. b ∈ U(I) なので

m ≤ b.

したがって

a < b

となるのでひとつの切断 (A,B) が決まったことになる. 上のm ∈ I に対して

a < a′ < m

なる a′ は a′ 6∈ B なので a′ ∈ A を満たす. したがって任意の a ∈ A より大きな数 a′ ∈ A

が存在するのでmaxA は存在しない. こうしてデデキントの公理により

minB = minU(I)

が存在することになる.� �
例 2. 部分集合として, 区間 I = (0, 1) を考える. このとき定義から

U(I) = [1,∞), L(I) = (−∞, 0]

である.� �

*2a ∈ U(I)であることのことの否定. すなわち任意のm ∈ I に対してm ≤ aが成り立つことの否定.
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第2章 実数の連続性 II

上限・下限
上限� �
部分集合 I ⊂ R とする. Iの上限 a = sup I を

sup I = minU(I)

で定義する. U(I) = ∅ のときは sup I = ∞ と定義する.� �
下限� �
部分集合 I ⊂ R とする. Iの下限 a = inf I を

inf I = maxL(I)

で定義する. L(I) = ∅ のときは inf I = −∞ と定義する.� �� �
例 3. 部分集合として, 区間 I = (0, 1) を考える. このとき

U(I) = [1,∞), L(I) = (−∞, 0]

であることは上で述べた. したがって上限・下限の定義により

sup I = 1, inf I = 0.� �babababababababababababababababababababab

こうして最大数・最小数の存在しない区間 I = (0, 1) の x = 1 と x = 0 に対し
てそれぞれ上限, 下限という役割を与えてやることができた.

定義の他に以下の特徴づけがあると上限・下限の関係する議論において便利なことが
ある. こちらを最初に定義として採用する説明の仕方もある.
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上限の特徴づけ� �
定理 2. 上に有界な部分集合 I ⊂ R とする. a = sup I であることの必要十分条件は
次の (1), (2) が成り立つことである.

(1) 任意の x ∈ I に対して x ≤ a.

(2) 任意の ε > 0 に対して x ∈ I が存在し a− ε < x.� �
証明. (必要性) (1) は a が上限であることから明らかである. (2) を否定すると ε > 0 が
存在し, 任意の x ∈ I に対して a− ε ≥ x となる. これは a が上限であることに矛盾する.

(十分性) (1) により a は I の上界の一つである. a′ で a′ < a なる I の上界が存在したと
すると ε = a− a′ > 0 として (2) により x ∈ I が存在し

a− ε = a− (a− a′)

= a′

< x

となり a′ は I の上界でない. これは矛盾なので a は I の上限である.

下限の特徴づけ� �
定理 3. 下に有界な部分集合 I ⊂ R とする. a = inf I であることの必要十分条件は
次の (1), (2) が成り立つことである.

(1) 任意の x ∈ I に対して a ≤ x.

(2) 任意の ε > 0 に対して x ∈ I が存在し x < a+ ε.� �
証明. 上限の場合と同様である.

アルキメデスの性質, 有理数の稠密性
アルキメデスの性質� �
定理 4. 自然数全体の集合 N は上に有界でない. すなわち任意の α ∈ R に対して
n ∈ N が存在し

α < n

が成り立つ.� �
証明. N が上に有界であるとすれば

a = supN
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が存在する. このとき上限の特徴づけによりm ∈ N が存在し

a− 1 < m

が成り立つ. これによりm + 1 > a かつm + 1 ∈ N となり a が上限であることに矛盾
する. したがってN は有界でない. また有界でないことにより, 任意の α ∈ R に対して
n ∈ N が存在し

α < n

が成り立つ.

有理数の稠密性� �
定理 5. a < b を満たす a, b ∈ R に対して r ∈ Q が存在し

a < r < b

が成り立つ.� �
証明. アルキメデスの性質により n ∈ N が存在し

1

b− a
< n

が成り立つ. またm ∈ Z が存在し
na < m

が成り立つ. この様な元が存在するので

m′ = min {m ∈ Z; na < m}

とおく. このとき
m′ − 1

n
≤ a <

m′

n

が成り立つ. したがって r = m′/n とおくと r ∈ Q かつ

a < r =
m′ − 1

n
+

1

n
≤ a+

1

n
< b.

無理数の稠密性� �
定理 6. a < b を満たす a, b ∈ R に対して s ∈ R \Q が存在し

a < s < b

が成り立つ.� �
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証明. a, b ∈ Q として示せば十分である. a < s < b なる s ∈ R \Q が存在しないとする.

このとき任意のm ∈ Z に対して

a+m(b− a) < s′ < b+m(b− a)

なる s′ ∈ R \Q は存在しない. なぜならもし存在すれば

t = s′ −m(b− a) ∈ R \Q

は*1 a < t < b をみたすがこれは仮定に反するからである. したがって

R =
⋃
m∈Z

[a+m(b− a), b+m(b− a)]

となるのでm0 ∈ Z が存在し√
2 ∈ [a+m0(b− a), b+m0(b− a)] となり矛盾する.

babababababababababababababababababababab

有理数（無理数）の稠密性は, 任意の実数 a ∈ R のいくらでも近いところに無
限に多くの有理数（無理数）があるということをいっている. 数直線には有理数
（無理数）が密につまっている.

最後に切断のことを再び考える. 切断には以下のいずれかの場合が考えられる.

(z) maxA が存在しminB が存在する.

整数全体の集合X = Z を切断するとこうなる.

(q) maxA が存在せずminB が存在しない.

有理数全体の集合X = Q の切断において考えられる. 例えばB = Q ∩
(√

2,∞
)

としてそれ以外の有理数をA = Q ∩
(
−∞,

√
2
] として切断したとする. このとき

s =
√
2 は無理数なので s 6∈ A ∪B でありA = Q ∩

(
−∞,

√
2
) となる.

(r) maxA が存在しminB が存在しない. またはminB が存在しmaxA が存在しな
い.

これはデデキントの公理が述べていることである. X = Rの切断は必ずこうなる.

*1t ∈ Qとすると s′ ∈ Qとなってしまう.
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三角不等式
三角不等式� �
定理 7. a, b ∈ R に対して

(1) |a+ b| ≤ |a|+ |b|.

(2)
∣∣|a| − |b|

∣∣ ≤ |a− b|.

が成り立つ.� �
証明. (1) |x| = max(x,−x) であることに注意すると

|a+ b| = max(a+ b,−(a+ b))

≤ max (|a|+ |b|, |a|+ |b|)
= |a|+ |b|.

(2)

|a| = |a− b+ b| ≤ |a− b|+ |b|

により
|a| − |b| ≤ |a− b|.

同じ様にして
|b| − |a| ≤ |a− b|.

したがって ∣∣|a| − |b|
∣∣ ≤ |a− b|.

babababababababababababababababababababab

三角不等式が成り立つこと自体を理解することは容易なことかもしれないが三
角不等式の重要性は応用において自在に使いこなすことにある. 解析学におい
てはかなり頻繁に用いられる不等式であって絶対値が関係する不等式の計算や
証明をするときには必ずと言って良いほど用いられる.

� �
三角不等式を繰り返し用いると x1, x2, . . . , xn ∈ R に対して∣∣∣∣∣

n∑
i=1

xi

∣∣∣∣∣ ≤
n∑

i=1

|xi|

が成り立つ.� �
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第3章 数列の極限の定義

数列の極限
数列 {an} = {an}∞n=1 の極限について定義を与える. 高校の数学では数列の極限が

lim
n→∞

an = a

であることを n が限りなく大きくなるとき an は a に限りなく近づくものと習う. この
定義では “限りなく”がどの程度のことなのか明確でないので分かりにくいと思うかも
しれない. そこで次の様な定義を導入する.

数列の極限の定義� �
数列 {an} とする. 任意の ε > 0 に対してN = N(ε) ≥ 1 が存在し n ≥ N ならばa

|an − a| < ε

が成り立つときに

lim
n→∞

an = a

とかく. このことを an → a (n→ ∞) とかくことがある. {an} が極限値をもつこと
を {an} は収束するということがある.

aN は εに依存して決まるからそのことがわかる様にN(ε)とかく. またN は自然数である.� �babababababababababababababababababababab

この定義に基づく議論の仕方を総称して ε-δ 論法といったり, 記号に合わせて
ε-N論法といったりする. ただしこの様な呼び方は愛称の様なもので呼び方自体
には意味がない. すなわち呼び方がこれらの本質を表しているわけではないこ
とを注意しておく.
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数列の発散の定義� �
数列 {an} とする. 任意のM > 0 に対してN = N(M) ≥ 1 が存在し n ≥ N ならば

an ≥M

が成り立つときに

lim
n→∞

an = ∞

とかき正の無限大に発散するという. このことを an → ∞ (n → ∞) とかくことが
ある. 負の無限大への発散も同様に定義される.� �babababababababababababababababababababab

既に上限の定義のところにも出てきたが∞ は上の様な定義の中における意味の
記号として用いられているだけであって無限大を数として扱わないことに注意
しておこう.

数列の振動� �
数列 {an} を

an = (−1)n, n ≥ 1

で定義する. an は+1 と−1 の値を交互に取るだけなので極限値は存在しない. ま
た±∞ に発散するわけでもない. この数列 {an} の場合は振動するという.� �� �
定理 8. 数列 {an} の極限値は存在すれば一意的である.� �
証明. ふたつの異なる極限値 a, b ∈ R, a 6= b が存在したとする. ε = |a− b|/2 > 0 に対
してN1 = N1(ε) ≥ 1, N2 = N2(ε) ≥ 1 が存在し

|an − a| < ε

2
(n ≥ N1),

|an − b| < ε

2
(n ≥ N2)

となる*1. このとき

N = max(N1, N2)

*1a 6= bとしたのだから, 極限値によってもN の選び方は変わるはずである.
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とおくと
|a− b| = |a− aN + aN − b|

≤ |a− aN |+ |b− aN |
< ε

=
1

2
|a− b|

となるので矛盾する. したがって a = bである.� �
定理 9. a ≥ 0 が任意の ε > 0に対して 0 ≤ a < ε を満たすとする. このとき a = 0

である.� �
証明. 数列 {an} を

an = a, n ≥ 1

と定義すると明らかに
lim
n→∞

an = a

である. 一方で仮定により, 任意の ε > 0 に対してN = 1 が存在して n ≥ 1 に対して
|an − 0| = a < ε. すなわち

lim
n→∞

an = 0

である. 極限値の一意性により a = 0 となる*2.� �
例 4. 数列 {an} を

an =
1

n2 + 1
, n ≥ 1

で定める. これは a = 0 に収束しそうである. このことを定義に沿って証明するには

|an − 0| < ε

が成り立つ様にすれば良いのだから
1

n2 + 1
< ε

を解くと
n2 >

1

ε
− 1

を得る. したがって, 任意の ε > 0 に対してN = N(ε) ∈
(√

1/ε,∞
)
∩ N が存在し

n ≥ N ならば |an − 0| < ε が成り立つ.� �
*2これは次の様にも証明できる. もし a 6= 0であるとすれば ε = a/2 > 0とおくと 2ε = a < εとなり矛
盾. したがって a = 0.
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� �
定理 10. 数列 {an} とする. an → a (n→ ∞) のとき |an| → |a| (n→ ∞) である.� �
証明. 不等式 ∣∣|an| − |a|

∣∣ ≤ |an − a|

により直ちに従う.

有界な数列� �
数列 {an} をN \ {0} からR への写像として考えたときの値域

I = {an ∈ R; n ≥ 1}

に対して U(I) 6= ∅ のとき {an} は上に有界であるという.

同様に下に有界であることも定義する. 上にも下にも有界なとき単に有界であると
いう.� �� �
数列の上限や下限は

sup
n≥1

an = sup{an ∈ R; n ≥ 1},

inf
n≥1

an = inf{an ∈ R; n ≥ 1}

で定義されるものである.� �� �
定理 11. 収束する数列 {an} は有界である. すなわち

−∞ < inf
n≥1

an ≤ sup
n≥1

an <∞.

� �
証明. 仮定により {an} の収束先を a ∈ R とする. 任意の ε > 0 に対してN = N(ε) ≥ 1

が存在し n ≥ N ならば

a− ε < an < a+ ε

が成り立っている. したがって

M = max (a1, a2, . . . , aN−1, a+ ε) ,

m = min (a1, a2, . . . , aN−1, a− ε)

とすれば, 全ての n ≥ 1 についてm ≤ an ≤M.
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� �
定理 12. 定数 c > 0とする. 数列{an}とする. 任意の ε > 0に対してN = N(ε) ≥ 1

が存在し n ≥ N ならば

|an − a| < cε

が成り立つとする. このとき

lim
n→∞

an = a

である.� �
証明. 任意の η > 0 に対して ε = η/c とおくと仮定により N = N(ε) ≥ 1 が存在し
n ≥ N ならば

|an − a| < cε = η

が成り立つ. η > 0 の任意性によりこれは

lim
n→∞

an = a

であることを意味する.

数列の極限の基本公式
数列の極限と四則演算� �
定理 13. 数列 {an}, {bn} について an → a, bn → b (n→ ∞) が成り立つとする. こ
のとき次の (1) ∼ (4) が成り立つ.

(1) can → ca, c ∈ R (n→ ∞).

(2) an + bn → a+ b (n→ ∞).

(3) anbn → ab (n→ ∞).

(4) bn 6= 0 かつ b 6= 0 のとき an/bn → a/b (n→ ∞).� �
証明. 任意の ε > 0とする. 仮定によりN1 = N1(ε) ≥ 1, N2 = N2(ε) ≥ 1 が存在し

|an − a| < ε (n ≥ N1),

|bn − b| < ε (n ≥ N2)
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が成り立つ.

(2)

N = max(N1, N2)

とおくと n ≥ N ならば

|an + bn − (a+ b)| ≤ |an − a|+ |bn − b| < 2ε.

定理 12 により, これは an + bn の a+ b への収束を意味する.

(3) 収束列は有界なので

M = max

(
1 + |b|, 1 + sup

n≥1
|an|
)

とおく. このとき (2) と同じようにして

N = max(N1, N2)

とおくと n ≥ N ならば

|anbn − ab| = |an(bn − b) + (an − a)b|
≤M (|bn − b|+ |an − a|)
≤ 2Mε.

定理 12 により, これは anbn の ab への収束を意味する. これの特別な場合として (1) が
成り立つ.

(4) bn → b のときに 1/bn → 1/b を示せば十分である.∣∣∣∣ 1bn − 1

b

∣∣∣∣ = ∣∣∣∣bn − b

b · bn

∣∣∣∣ = |bn − b|
|b||bn|

である. |bn| → |b| (n → ∞) であるから η = |b|/2 > 0 に対してN0 = N0(η) ≥ 1 が存在
し n ≥ N0 ならば ∣∣|bn| − |b|

∣∣ < η

なので

−|b|
2
< |bn| − |b| < |b|

2
.

したがってN = max(N0, N2) とおくと n ≥ N ならば∣∣∣∣ 1bn − 1

b

∣∣∣∣ < 2ε

|b|2
.

定理 12 により, これは an/bn の a/b への収束を意味する.
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はさみうちの原理� �
定理 14. 数列 {an}, {bn}, {cn} について

an ≤ cn ≤ bn, n ≥ 1

とする. このとき an → a, bn → a (n→ ∞) ならば cn → a (n→ ∞).� �
証明. 任意の ε > 0 に対してN1 = N1(ε) ≥ 1, N2 = N2(ε) ≥ 1 が存在し

|an − a| < ε (n ≥ N1),

|bn − a| < ε (n ≥ N2)

が成り立つ. したがって

N = max(N1, N2)

とおくと n ≥ N ならば

a− ε < an < a+ ε, a− ε < bn < a+ ε

が成り立つ. an ≤ cn ≤ bn なので n ≥ N ならば

a− ε < an ≤ cn ≤ bn < a+ ε.

すなわち

|cn − a| < ε.
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第4章 数列の極限の性質I

有界単調数列の収束性
収束列が有界であることは前章で述べた. その逆は成り立たない. すなわち有界な数
列で収束しないものがある. 例えば有界な値をとりながら振動する数列がそうである.

ところが有界であることに加えて単調性を仮定すれば収束する.

単調数列� �
数列 {an} とする. 任意の n ≥ 1 について

an ≤ an+1

が成り立つとき {an} は単調増加列という. 任意の n ≥ 1 について

an ≥ an+1

が成り立つとき {an} は単調減少列という. 真の不等号

an < an+1

または

an > an+1

が成り立つとき, それぞれ狭義単調増加列または狭義単調減少列という. 狭義単調増
加列であれば単調増加列である. 狭義であることを詳しくいう必要があるときその
様にいう.� �
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� �
例 5. 数列 {an} を

an =
1

n+ 1
, n ≥ 1

で定義すると {an} は単調減少列である. 実際に

an+1 =
1

n+ 2
≤ 1

n+ 1
= an

が成り立っている. 詳しくいえば {an} は狭義単調減少列である.� �� �
例 6. 数列 {an} とする. {an} は単調増加列で a1 > 0 を満たすとする. 数列 {bn} を

bn =
1

an
, n ≥ 1

で定義すると {bn} は単調減少列となる. 実際に

an+1 ≥ an

なので

bn+1 =
1

an+1

≤ 1

an
= bn

が成り立つからである.� �� �
定理 15. 上に有界な単調増加列は収束し極限値は sup

n≥1
an である.

� �
証明. s = sup

n≥1
an が存在するので, すべての n ≥ 1 に対して

an ≤ s.

任意の ε > 0 に対して s− ε < s であるからN = N(ε) ≥ 1 が存在し n ≥ N ならば

s− ε < aN ≤ an ≤ s < s+ ε

が成り立つ.

下に有界な単調減少列の場合も同様.� �
定理 16. 下に有界な単調減少列は収束し極限値は inf

n≥1
an である.� �
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� �
例 7. 0 < A < 1 とする. 数列 {an} を

an = An, n ≥ 1

で定める. これは a = 0 に収束することを示そう. 0 < A < 1 により {an} は下に有
界な単調減少列であるから極限値 a ∈ R が存在するa. このとき

an+1 = Aan

であるが左辺はaに右辺はAaに収束する. したがって極限値の一意性によりa = Aa

となる. 移項して (1− A)a = 0. これにより a = 0.

aこの時点では a = 0か分かっていない.� �� �
例 8. 次の漸化式で定まる数列 {an} を考える.an+1 =

a2n + 2

2an
, n ≥ 1

a1 = 2
.

{an} は明らかに an > 0 であるから

an+1 − an = −
(
an +

√
2
) (
an −

√
2
)

2an
,

an −
√
2 =

(
an−1 −

√
2
)2

2an−1

> 0, n ≥ 2

を満たすので下に有界な単調減少列である. したがって極限値の存在が保証される.

それを α = lim
n→∞

an とおく. 漸化式の両辺で n→ ∞ とすれば

α =
α2 + 2

2α

を得るのでこれを解くと α =
√
2 となる.� �



28 第 4章 数列の極限の性質 I

� �
例 9. A > 0 とする. 数列 {an} を

an =
An

n!
, n ≥ 1

で定める. これは a = 0 に収束することを示そう.

N1 = min {n ∈ N; n > A}

とおく. このとき n ≥ N1 に対して

An

n!
≤ AN1

N1!

(
A

N1

)n−N1

となる. 任意の ε > 0 とする. 例 7 により η = εN1!/A
N1 に対してN2 = N2(η) ≥ 1

が存在し n ≥ N2 ならば (
A

N1

)n−N1

< η.

すなわちN = max(N1, N2) とおくと n ≥ N ならば

|an − 0| ≤ AN1

N1!

(
A

N1

)n−N1

<
AN1

N1!
η = ε.

� �
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� �
例 10. 数列 {an} は収束するとする. すなわち

lim
n→∞

an = a

であるとする. このとき, 総和平均の極限について

lim
n→∞

a1 + a2 + · · ·+ an
n

= a

が成り立つ. このことを示そう. 任意の ε > 0 に対してN1 = N1(ε) ≥ 1 が存在し
n ≥ N1 ならば

|an − a| < ε

2

が成り立つ.

m = max (|a1 − a|, |a2 − a|, . . . , |aN1−1 − a|)

とおく. このときN2 = N2(ε) ≥ 1 が存在し n ≥ N2 ならば
(N1 − 1)m

n
<
ε

2

が成り立つ. N = max(N1, N2) とすると n ≥ N ならば∣∣∣∣a1 + a2 + · · ·+ an
n

− a

∣∣∣∣
≤ |a1 − a|+ |a2 − a|+ · · ·+ |aN1−1 − a|

n
+

|aN1 − a|+ · · ·+ |an − a|
n

<
(N1 − 1)m

n
+

|aN1 − a|+ · · ·+ |an − a|
n

<
ε

2
+

(n− (N1 − 1))

n

ε

2

=
ε

2
+

(
1− N1 − 1

n

)
ε

2

≤ ε.� �
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� �
例 11. 例 10 の逆は成り立たない. つまり総和平均は収束しても極限値を持たない
数列がある. 実際に {an} を

an = (−1)n, n ≥ 1

とすると

a1 + a2 + · · ·+ an
n

=

− 1

n
(n :奇数)

0 (n :偶数)

なので総和平均は 0 に収束する. ところが以前にも確認した様に an は振動している
ので極限値を持たない.� �� �
定理 17. 数列 {an}, {bn} とする. {an}, {bn} は収束するとする. このとき

an ≤ bn, n ≥ 1

ならば
lim
n→∞

an ≤ lim
n→∞

bn

である.� �
証明. a = limn→∞ an, b = limn→∞ bnとおく. a > bと仮定して矛盾を導く. a−b = ε > 0

とおく. このときN1 = N1(ε) ≥ 1, N2 = N2(ε) ≥ 1 が存在し

|an − a| < ε

2
(n ≥ N1),

|bn − b| < ε

2
(n ≥ N2).

このときN = max(N1, N2) とおくと n ≥ N ならば

bn < b+
ε

2
= a− ε

2
< an

となり矛盾.
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カントールの区間縮小法とボルツァノ・ワイエルシュトラス
の定理
カントールの区間縮小法� �
定理 18. 閉区間の列 In = [an, bn], n ≥ 1 について次の (1), (2) を仮定する.

(1) In+1 ⊂ In, n ≥ 1.

(2) lim
n→∞

(bn − an) = 0.

このとき全ての n ≥ 1 に対して In に属する唯一の c ∈ R が存在する. すなわち

{c} =
⋂
n≥1

In.

� �
証明. 仮定により

a1 ≤ an ≤ bn ≤ b1

であるから, {an}, {bn} はそれぞれ上に有界な単調増加列, 下に有界な単調減少列であ
る. したがってこれらは, それぞれ a ∈ R と b ∈ R に収束するが, 定理 17 により

a ≤ b

である. 仮定の (2) により任意の ε > 0 に対してN = N(ε) ≥ 1 が存在し n ≥ N ならば

0 ≤ bn − an < ε.

したがって

an ≤ a ≤ b ≤ bn

なので

0 ≤ b− a ≤ bn − an < ε.

ε > 0 の任意性により

a = b.

これを

c = a = b

とおく. このときすべての n ≥ 1 に対して

an ≤ c ≤ bn



32 第 4章 数列の極限の性質 I

が成り立っているので
c ∈

⋂
n≥1

In

が成り立つ. d ∈
⋂

n≥1 In が存在したとすれば
an ≤ d ≤ bn

なので
an − bn ≤ c− d ≤ bn − an.

はさみうちの原理により c = d を得る. したがって
{c} =

⋂
n≥1

In.

部分列� �
数列 {an} について

n(1) < n(2) < · · · < n(k) < · · ·

に対して {an(k)} = {an(k)}∞k=1 を {an} の部分列という.� �� �
例 12. 数列 {an} を

an =
1

n
, n ≥ 1

と定める. n(k) = 2k − 1, k ≥ 1 として

an(k) =
1

2k − 1
, k ≥ 1

はひとつの部分列 {an(k)} を定める. これは部分列の一例であって, これが唯一の部
分列ではないことに注意しよう.� �
ボルツァノ・ワイエルシュトラスの定理� �
定理 19. 有界な数列 {cn} は収束する部分列をもつ.� �
証明. 有界性により a1, b1 ∈ R が存在し, 任意の n ≥ 1 に対して

a1 ≤ cn ≤ b1

となる. 区間 [a1, b1] を次の二つに分ける[
a1,

a1 + b1
2

]
,

[
a1 + b1

2
, b1

]
.
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このどちらかに {cn} = {c1, c2, . . . , cn, . . .} の値が無限個含まれているので*1, それを新
たに

[a2, b2]

とおく. この手続きを続けて区間

[ak, bk], k ≥ 1

を定める列 {ak}, {bk} を定義する. {ak} は上に有界な単調増加列, {bk} は下に有界な単
調減少列となる. したがってそれぞれの極限値 a, b ∈ R が存在する. さらに区間の構成
の仕方から k 番目の区間の幅は

bk − ak =
1

2k−1
(b1 − a1) → 0 (k → ∞).

したがってカントールの区間縮小法により

a = b.

区間の構成の仕方から [ak, bk], k ≥ 1 に含まれる {cn} の部分列 {cn(k)}∞k=1 で

cn(k) ∈ [ak, bk], n(1) < n(2) < · · ·

なるものをとれる.

ak ≤ cn(k) ≤ bk, k ≥ 1

なので, はさみうちの原理により部分列 {cn(k)} は a ∈ R に収束する.� �
例 13. 閉区間の列

In =

[
− 1

n
,
1

n

]
, n ≥ 1

は an = −1/n, bn = 1/n, n ≥ 1 としてカントールの区間縮小法の仮定を満たして
いる.

{0} =
⋂
n≥1

In

である.� �

*1これは数列をグラフとして描いたときの値を並べたものなので, 別の番号 nに対応する値 cn は別の
ものとして扱う. 例えば cn = (−1)n の場合は {cn} = {−1,+1,−1, . . .}であるとする.
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� �
例 14. 開区間の列

In =

(
0,

1

n

)
, n ≥ 1

について考えると ⋂
n≥1

In = ∅

である. このことを示すために空でないと仮定すると c ∈
⋂

n≥1 In が存在する. この
とき任意の n ≥ 1 に対して

0 < c <
1

n
.

一方でアルキメデスの性質によりN ≥ 1 が存在して

N ≥ 1

c

が成り立つので c 6∈ IN . これは矛盾である.� �
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上極限・下極限
有界な数列 {an} から新しい数列 {αn}, {βn} を

αn = sup
k≥n

ak, n ≥ 1,

βn = inf
k≥n

ak, n ≥ 1,

と定める. 番号が増えると k の動く範囲が狭くなるので {αn} は下に有界な単調減少列,

{βn} は上に有界な単調増加列となる. したがってそれぞれの極限値が存在するので
lim sup
n→∞

an = lim
n→∞

αn = inf
n≥1

αn,

lim inf
n→∞

an = lim
n→∞

βn = sup
n≥1

βn

とかき lim sup
n→∞

an, lim inf
n→∞

an をそれぞれ {an} の上極限, {an} の下極限という. このとき

lim inf
n→∞

an ≤ lim sup
n→∞

an

である. 実際に
βl ≤ αm, l,m = 1, 2, . . .

であることから従う. ここで l ≤ m の場合, {βn} が単調増加なので
βl ≤ βm ≤ αm

l ≥ m の場合 {αn} が単調減少なので
βl ≤ αl ≤ αm

であることに注意.� �
定理 20. 有界な数列 {an} が収束するための必要十分条件は

lim inf
n→∞

an = lim sup
n→∞

an

が成り立つことである. またこのとき lim
n→∞

an = lim sup
n→∞

an = lim inf
n→∞

an となる.

� �
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証明. （必要性）極限値を a ∈ R とおく. 任意の ε > 0 に対してN = N(ε) ≥ 1 が存在
し n ≥ N ならば

a− ε < an < a+ ε

なので
a− ε ≤ inf

k≥n
ak ≤ sup

k≥n
ak ≤ a+ ε.

これは
a = lim

n→∞

(
sup
k≥n

ak

)
= lim

n→∞

(
inf
k≥n

ak

)
ということである. したがって上極限と下極限の定義により

a = lim sup
n→∞

an = lim inf
n→∞

an.

（十分性）
a = lim sup

n→∞
an = lim inf

n→∞
an.

を仮定する. 上極限と下極限の定義によりこれは

a = lim
n→∞

sup
k≥n

ak = lim
n→∞

inf
k≥n

ak

を仮定しているということである. このとき, 任意の ε > 0 に対してN1 = N1(ε) ≥ 1 が
存在し n ≥ N1 ならば

a− ε < sup
k≥n

ak < a+ ε

が成り立つ. とくに n ≥ N1 ならば

an ≤ sup
k≥n

ak < a+ ε.

同様にN2 = N2(ε) ≥ 1 が存在し n ≥ N2 ならば

a− ε < inf
k≥n

ak < a+ ε

が成り立つ. とくに n ≥ N2 ならば

an ≥ inf
k≥n

ak > a− ε.

N = max(N1, N2) とおくと n ≥ N ならば

a− ε < inf
k≥n

ak ≤ an ≤ sup
k≥n

ak < a+ ε

が成り立つ.
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� �
例 15. 数列 {an} を

an = (−1)n, n ≥ 1

で定める. このとき

αn = sup
k≥n

(−1)k = 1,

βn = inf
k≥n

(−1)k = −1.

したがって

lim sup
n→∞

an = 1, lim inf
n→∞

an = −1.

� �
コーシー列
コーシー列� �
数列 {an} がコーシー列であるとは, 任意の ε > 0 に対してN = N(ε) ≥ 1 が存在し
m,n ≥ N ならば

|an − am| < ε

が成り立つことをいう.� �� �
定理 21. 数列 {an} が収束するための必要十分条件は {an} がコーシー列であるこ
とである.� �
証明. （必要性）{an} が a ∈ R に収束すると仮定すると, 任意の ε > 0 に対してN =

N(ε) ≥ 1 が存在し n ≥ N ならば
|an − a| < ε

2

となっている. したがってm,n ≥ N ならば
|an − am| ≤ |an − a|+ |am − a| < ε

が成り立つ.

（十分性）{an} がコーシー列なのでN = N(ε) ≥ 1 が存在し k ≥ N ならば
aN − ε < ak < aN + ε

となるので
aN − ε ≤ inf

n≥N
an ≤ lim inf

n→∞
an ≤ lim sup

n→∞
an ≤ sup

n≥N
an ≤ aN + ε.
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したがって

0 ≤ lim sup
n→∞

an − lim inf
n→∞

an ≤ 2ε.

ε > 0 の任意性により
lim sup
n→∞

an = lim inf
n→∞

an.

これと上の定理により {an} は収束する.� �
注意 1. 集合X の任意のコーシー列がX の点に収束するという性質をX の完備性
という. 実数全体の集合 R は完備性を備えているのである. 考える集合X やその
極限の意味によってはコーシー列が収束しないということが起こり得る.� �
ネイピア数� �
定理 22. 数列 {an} を

an =

(
1 +

1

n

)n

, n ≥ 1

によって定める. このとき {an} の極限値が存在する. {an} の極限値を

e = lim
n→∞

(
1 +

1

n

)n

とおき e をネイピア数という.� �
証明. 二項定理により(

1 +
1

n

)n

=
∑

n1+n2=n

n!

n1!n2!

(
1

n

)n2

= 1 + n · 1
n
+
n(n− 1)

2!

(
1

n

)2

+ · · ·+ n!

n!
· 1

nn

= 1 + 1 +
1

2!

(
1− 1

n

)
+ · · ·+ 1

n!

(
1− 1

n

)
· · ·
(
1− n− 1

n

)
を得る. また(

1 +
1

n+ 1

)n+1

= 1 + 1 +
1

2!

(
1− 1

n+ 1

)
+ · · ·+ 1

n!

(
1− 1

n+ 1

)
· · ·
(
1− n− 1

n+ 1

)
+

1

(n+ 1)!

(
1− 1

n+ 1

)
· · ·
(
1− n

n+ 1

)
により an < an+1 を得る. ここで

1

n+ 1
<

1

n
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なので

1− 1

n
< 1− 1

n+ 1

を使った. また

an < 1 + 1 +
1

2!
+

1

3!
+ · · ·+ 1

n!

≤ 1 + 1 +
1

2
+

1

22
+ · · ·+ 1

2n−1

≤ 1 +
∞∑
n=0

1

2n
= 1 +

1

1− 1/2
= 3.

ここで

3! = 3 · 2 · 1 > 2 · 2 · 1 = 22

なので
1

3!
<

1

22

などを使った. 以上により {an} は単調増加で上に有界な数列なので極限値が存在する.

その値を

e = lim
n→∞

(
1 +

1

n

)n

とおくことができる.

babababababababababababababababababababab

ネイピア数は

e = 2.718281828 · · ·

であることが知られている. 何桁も記憶する必要はないが 2.7 < e < 2.8 ぐらい
であるという認識は持っていた方が良いかもしれない.
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第6章 関数, 逆関数, 関数の極限

値域� �
区間 I ⊂ R とする. 関数 f : I → R とする. f の値域を

f(I) = {y ∈ R; y = f(x), x ∈ I}

とかく.� �
単調関数� �
区間 I ⊂ R とする. 関数 f : I → R とする. x1 < x2 に対して

f(x1) ≤ f(x2)

が成り立つとき f は単調増加関数という. 単調減少関数についても同様に定義する.

真の不等号 f(x1) < f(x2) が成り立つとき, 狭義単調増加関数という.� �
関数の極限
近傍� �
r > 0 とする. 開区間

Ia(r) = (a− r, a+ r)

を a の r-近傍という. 集合N が a の適当な r-近傍を含むとき a の近傍という. すな
わち r > 0 が存在して

Ia(r) ⊂ N

となる様な集合N を a の近傍という. r-近傍はひとつの近傍である.� �
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関数の極限の定義 1� �
区間 I ⊂ R とする. 関数 f : I → R は a ∈ R の近傍において定義されているとする.

任意の ε > 0 に対して δ = δ(a, ε) > 0 が存在して |x− a| < δ ならばa

|f(x)− A| < ε

が成り立つときA ∈ R を f の極限値といい

lim
x→a

f(x) = A

とかく. f(x) → A (x→ a) とかくことがある.

a一般には δ は aと εに依存して決まるので δ = δ(a, ε)とかいた. 本来は依存する可能性がある
ものは書いてあげたほうが丁寧である. また (a− δ, a+ δ) ⊂ I となる様に選ばれている.� �
関数の極限の定義 2� �
a ∈ R とする. 関数 f : [a,∞) → R とする. 任意の ε > 0 に対してM = M(ε) > 0

が存在して x ≥M ならば

|f(x)− A| < ε

が成り立つときA ∈ R を f の極限値といい

lim
x→∞

f(x) = A

とかく. f(x) → A (x → ∞) とかくことがある. x → −∞ の極限も同様に定義さ
れる.� �
発散について� �
ここでは詳しく述べないが関数の極限の発散も数列の場合と同様の仕方で定義さ
れる.� �
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右側極限・左側極限� �
区間 I ⊂ R とする. 関数 f : I → R とする. 任意の ε > 0 に対して δ = δ(a, ε) > 0

が存在して 0 < x− a < δ ならば

|f(x)− A| < ε

が成り立つとき

lim
x→a+0

f(x) = A

とかきA ∈ R を右極限値という. f(x) → A (x→ a+ 0) とかくことがある. 左側極
限も同様に定義される.� �� �
定理 23. 区間 I ⊂ R とする. 関数 f : I → R とする.

lim
x→a

f(x)

が存在することの必要十分条件は

lim
x→a+0

f(x) = lim
x→a−0

f(x) = A

となることである.� �
証明. 必要性は明らかなので十分性を示す. 任意の ε > 0 とする. 右極限値が存在する
という仮定により δ1 = δ1(a, ε) > 0 が存在し 0 < x− a < δ1 ならば

|f(x)− A| < ε

となる. 同様に左極限値が存在するという仮定により δ2 = δ2(a, ε) > 0 が存在し 0 <

a− x < δ2 ならば
|f(x)− A| < ε

となる. したがって δ = min(δ1, δ2) とおくと |x− a| < δ ならば
|f(x)− A| < ε.

� �
例 16. 関数

f(x) =
1

1 + |x|
, x ∈ R

と定義する. このとき lim
x→∞

f(x) = 0 と予想される. 数列の極限と同じ様に考えると
任意の ε > 0 に対してM = 1/ε とすれば |x| ≥M ならば |f(x)| < ε が成り立つ.� �
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� �
定理 24. 区間I ⊂ Rとする. 関数f : I → Rとする. f(x) → A (x→ a)となるため
の必要十分条件は an → a (n→ ∞) なる数列 {an} に対して f(an) → A (n→ ∞)

となることである.� �
証明. (必要性) f(x) → A (x → a) を仮定する. 任意の ε > 0 に対して δ = δ(a, ε) > 0

が存在し |x− a| < δ ならば
|f(x)− A| < ε

が成り立つ. 一方N = N(δ) ≥ 1 が存在して n ≥ N ならば
|an − a| < δ

が成り立つ. したがって
|f(an)− A| < ε.

(十分性) 結論を否定して f → A (x→ a) が成り立たないとする. すなわち ε > 0 が存
在し, 任意の δ > 0 に対して |x− a| < δ かつ

|f(x)− A| > ε

となるような x ∈ I が存在するとする. とくに δ = 1/n とすると

|an − a| < 1

n

かつ
|f(an)− A)| > ε

なる {an} が存在する. これは an → a (n→ ∞) かつ f(an) がA に収束しないことを意
味する. したがって矛盾.� �
注意 2. 右側極限 x→ a+ 0, 左側極限 x→ a− 0 や x→ ∞ の極限の場合も同様で
ある.� �� �
定理 25. 区間 I ⊂ R とする. 関数 f : I → R, g : I → R とする. f(x) → A,

g(x) → B (x→ a) が成り立つとする. このとき次の (1) ∼ (5) が成り立つ.

(1) cf(x) → cA, c ∈ R (x→ a).

(2) f(x) + g(x) → A+B (x→ a).

(3) f(x)g(x) → AB (x→ a).

(4) g(x) 6= 0 かつB 6= 0 のとき 1/g(x) → 1/B (x→ a).

(5) f(x) ≤ g(x), x ∈ I が成り立つとするとA ≤ B.� �
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証明. 数列の極限の場合と同じ様に考えれば良い.� �
定理 26. 関数 f : I → R, g : I → R, h : I → R とする.

f(x) ≤ g(x) ≤ h(x), x ∈ I

かつ

f(x) → A, h(x) → A (x→ a)

ならば

g(x) → A (x→ a).� �
証明. 数列の場合と同じ様に考える.

逆関数
逆関数� �
区間 I ⊂ R とする. 関数 f : I → R とする. f が単射であるとき y = f(x) について
y から x への逆対応を

f−1 : f(I) → R

または

y = f−1(x), x ∈ f(I)

とかき f の逆関数という. f−1 のグラフは f のグラフを直線 y = x に関して対称に
移したものである.� �
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指数関数と対数関数� �
指数関数を厳密に定義するには有理数の稠密性を用いるa. ここではその詳細は省略
して指数関数を紹介するにとどめる.

a > 0 に対して a のべき乗を対応させる関数

f(x) = ax, x ∈ R

を指数関数という. この逆関数を a > 0 を底とする対数関数といい

g(x) = loga x, x ∈ (0,∞)

とかく. 特に a = e のとき自然対数といい

g(x) = log x, x ∈ (0,∞)

とかく. これは
h(x) = ex, x ∈ R

の逆関数である. log を ln

g(x) = ln x, x ∈ (0,∞)

とかくことがある. また指数関数は

h(x) = exp(x), x ∈ R

とかくことがある.

a任意の実数に収束する有理数の数列がある.� �
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逆三角関数� �
三角関数は周期関数であるから定義域を制限してやらないと逆関数を定義できない.

例えばR 全体で考えると

sin x = 1

に対応する x は無数にあるからである. 以下の様に定義域を制限して考える.

sin x : [−π/2, π/2] → [−1, 1]

cos x : [0, π] → [−1, 1]

tan x : (−π/2, π/2) → R

はそれぞれ狭義単調増加関数, 狭義単調減少関数, 狭義単調増加関数であるから逆関
数を定義することができる. これらの逆関数を

y = sin−1 x

y = cos−1 x

y = tan−1 x

と表す. cos−1 x などを Cos−1x, arc cos x や Arc cos x 等とかくこともある. まとめ
ると

y = sin−1 x ⇐⇒ x = sin y, y ∈ [−π/2, π/2]
y = cos−1 x ⇐⇒ x = cos y, y ∈ [0, π]

y = tan−1 x ⇐⇒ x = tan y, y ∈ (−π/2, π/2)� �
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� �
例 17. 次の方程式

cos−1 x = tan−1
√
15, x ∈ [−1, 1]

を解くことを考える. まず

θ = cos−1 x = tan−1
√
15

とおく. このとき cos θ = x と tan θ =
√
15 を得る. tan θ =

√
15 により θ ∈ (0, π/2)

である. 三角関数の公式

1 + tan2 θ =
1

cos2 θ

を用いて

16 =
1

cos2 θ

を得る. したがって x = cos θ = ±1/4. θ ∈ (0, π/2) なので x = 1/4.� �
極限の公式� �
定理 27. 以下の極限の公式 (1) ∼ (3) を得る.

(1) lim
x→0

sin x

x
= 1.

(2) lim
x→±∞

(
1 +

1

x

)x

= e.

(3) lim
x→0

(1 + x)1/x = e.� �
証明. (1) の証明はここでは省略する. 適当な文献を参照してほしい.

(2) x ≥ 1 に対して n ≥ 1 を n ≤ x < n+ 1 となるように選ぶと

1 +
1

n+ 1
< 1 +

1

x
≤ 1 +

1

n
.

したがって (
1 +

1

n+ 1

)n

<

(
1 +

1

x

)x

<

(
1 +

1

n

)n+1
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なので (
1 +

1

n+ 1

)n+1

(
1 +

1

n+ 1

) <

(
1 +

1

x

)x

<

(
1 +

1

n

)n(
1 +

1

n

)
.

x→ ∞ とすると n→ ∞ となり

lim
x→+∞

(
1 +

1

x

)x

= e.

x→ −∞ の場合については, x = −y とおくと y → ∞ であり(
1 +

1

x

)x

=

(
1− 1

y

)−y

=

(
1

1− 1/y

)y

=

(
y

y − 1

)y

=

(
1 +

1

y − 1

)y−1(
1 +

1

y − 1

)
→ e (y → ∞)

となり
lim

x→−∞

(
1 +

1

x

)x

= e.

(3) y = 1/x とおくと x→ ±∞ のとき y → ±0 である. また(
1 +

1

x

)x

に x = 1/y を代入すると (
1 +

1

x

)x

= (1 + y)1/y .

したがって

lim
y→0

(1 + y)1/y = e

がいえる. 最後に文字の表記を y から x に変えれば良い.
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第7章 関数の連続性と一様連続性

関数の連続性
関数の連続性� �
開区間 I ⊂ R とする. 関数 f：I → R とする. f が a ∈ I で連続であるとは, 任意の
ε > 0 に対して δ = δ(a, ε) > 0 が存在し |x− a| < δ ならばa

|f(x)− f(a)| < ε

が成り立つことをいう. すなわち f が a で連続とは

lim
x→a

f(x) = f(a)

が成り立つということである. f が任意の a ∈ I において連続のとき f は I 上連続
であるという.

aδ = δ(a, ε)は一般に aにも依存して決まる.� �
開区間 I ⊂ R とする. a ∈ I とする.

Xa = {f : I → R; lim
x→a

f(x) が存在する }

とおく. Xa を定義域として写像 La : Xa → R を
La(f) = lim

x→a
f(x)

で定義すると f が a で連続であるということは
La ◦ f = f ◦ La = f(a)

が成り立つということである. すなわち連続関数としての写像 f : I → RとLa : Xa → R
は可換である. 写像で可換でないものがある. 行列の積がそのひとつの例である.

右連続・左連続� �
I = [a, b) として関数 f：I → R について

lim
x→a+0

f(x) = f(a)

が成り立つとき f は a ∈ I において右連続であるという. 左連続も同じ様に定義
する.� �
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閉区間における連続性� �
閉区間 I = [a, b] における f : I → R の連続性は端点 a, b においては右連続または左
連続の意味で連続性を定める. すなわち

f(x0) =


lim

x→x0+0
f(x) (x0 = a)

lim
x→x0

f(x) (x0 ∈ (a, b))

lim
x→x0−0

f(x) (x0 = b)

が成り立つときに f は I = [a, b] 上連続であるという.� �� �
定理 28. 開区間 I ⊂ R とする. 関数 f : I → R とする. f が a ∈ I において連続で
あるための必要十分条件は f が a ∈ I で右連続かつ左連続であることである.� �
証明. 片側極限に関する定理の証明と同様.� �
例 18. 関数

f(x) = x2, x ∈ R

と定義する. f は連続である. a ∈ R とする. 任意の ε > 0 に対して |x− a| < δ と
したときに

|x2 − a2| < ε

となる δ > 0 を見つければ良い. 0 < δ < 1 として考えれば十分である. このとき

|x2 − a2| = |x+ a||x− a|
≤ (|x|+ |a|)|x− a|
≤ (δ + 2|a|)δ
≤ (1 + 2|a|)δ

を得る. したがって任意の ε > 0 に対して δ = (1/2)min(ε/(1 + 2|a|), 1) が存在して
|x− a| < δ ならば |f(x)− f(a)| < ε であるということが示せた.� �� �
定理 29. 区間 I ⊂ R とする. 関数 f : I → R とする. f がa ∈ I で連続であることの
必要十分条件はan → a (n→ ∞) なる数列 {an} に対して f(an) → f(a) (n→ ∞)

となることである.� �
証明. 定理 24より明らかである.
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連続関数と四則演算� �
定理 30. 区間 I ⊂ R とする. 関数 f : I → R, g : I → R とする. f, g は a ∈ I にお
いて連続であるとする. このとき, 以下の (1) ∼ (4) の関数も a ∈ I において連続で
ある.

(1) cf, c ∈ R.

(2) f + g.

(3) fg.

(4) f/g, g(a) 6= 0.� �
証明. 関数の極限と四則演算の関係と同じである.� �
例 19. I = [a, b] とする. f : I → R は連続であるとする. c ∈ (a, b) に対して
f(c) > 0 のとき δ > 0 が存在し f(x) > 0, x ∈ (c − δ, c + δ) となる. 実際に
ε = f(c)/2 > 0 とすれば f の連続性により δ = δ(c, ε) > 0 が存在し

|f(x)− f(c)| < ε

となる. したがって

0 <
f(c)

2
< f(x) <

3f(c)

2
.� �

合成関数, 逆関数の連続性
合成関数� �
区間 I, J ⊂ R とする. 関数 f : I → R, g : J → R とする. f(I) ⊂ J のとき f と g

は合成可能といい, 合成関数 g ◦ f を

(g ◦ f)(x) = g(f(x)), x ∈ I

で定める.� �
合成関数の連続性� �
定理 31. 区間 I, J ⊂ R とする. 関数 f : I → R, g : J → R とする. f は連
続で f(I) ⊂ J を満たし g は J において連続であるとする. このとき, 合成関数
g ◦ f : I → R も連続である.� �
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証明. g は b = f(a) で連続だから, 任意の ε > 0 に対して δ = δ(b, ε) > 0 が存在し
|y − b| < δ ならば

|g(y)− g(b)| < ε.

また f は連続なので上の δ > 0 に対して δ0 = δ0(a, δ) > 0 が存在し |x− a| < δ0 ならば
|f(x)− b| < δ がいえる. すなわち |x− a| < δ0 ならば

|g(f(x))− g(f(a))| < ε.

逆関数の連続性� �
定理 32. 区間 I ⊂ R とする. 連続関数 f : I → R とする. f は狭義単調増加関数で
あるとする. このとき f−1 : f(I) → I は連続関数である. また狭義単調増加関数で
ある. 仮定で狭義単調減少関数であると仮定した場合も同様の結果が得られる.� �
証明. 単調性
y1 < y2 かつ y1, y2 ∈ f(I) とする. このとき x1, x2 ∈ I がそれぞれ一意的に存在して

x1 = f−1(y1)

x2 = f−1(y2)

とかける.

x1 ≥ x2

とすると f が狭義単調増加関数であることから

y1 = f(x1) ≥ f(x2) = y2

となり y1 < y2 の仮定に矛盾する. したがって f−1 は狭義単調増加関数である.

連続性
y0 ∈ f(I) が存在して y0 で連続でないと仮定すると ε > 0 が存在して任意の n ≥ 1 に
対して |bn − y0| < 1/n かつ

|f−1(bn)− f−1(y0)| ≥ ε

となる {bn} が存在する.

an = f−1(bn),

x0 = f−1(y0)
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とおくと an ≥ x0 + ε または an ≤ x0 − ε となるので f が狭義単調増加関数であること
から

bn = f(an) > f(x0 + ε) または bn = f(an) < f(x0 − ε)

{bn} は収束列で bn → y0 (n→ ∞) を満たすので

y0 = f(x0) ≥ f(x0 + ε) または y0 = f(x0) ≤ f(x0 − ε)

となる. これは f が狭義単調増加関数であることに矛盾する. したがって f−1 は連続で
ある.

いくつかの例� �
例 20. 三角関数, 指数関数や対数関数は定義域で連続である. （例 27–29も参照.）� �� �
例 21.

f(x) =


sin x

x
(x ∈ R \ {0})

1 (x = 0)

はR 上で連続である. 実際に

lim
x→0

f(x) = lim
x→0

sin x

x

= 1

= f(0)

となるからである.� �
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� �
例 22.

f(x) =

x sin
(
1

x

)
(x ∈ R \ {0})

0 (x = 0)

はR 上で連続である. 実際に |f(x)| ≤ |x| → 0 (x→ 0) なので

lim
x→0

f(x) = lim
x→0

x sin

(
1

x

)
= 0

= f(0)

となるからである.� �� �
例 23.

f(x) =

{
1 (x ≥ 0)

0 (x < 0)

は x = 0 で不連続である. 実際に f(0) = 1 であるが

lim
x→+0

f(x) = 1 = f(0), lim
x→−0

f(x) = 0 6= f(0)

となるからである. この例では x = 0 における極限値が存在しない.� �� �
例 24. 定数 α ∈ R とする.

f(x) =

sin

(
1

x

)
(x ∈ R \ {0})

α (x = 0)

は x = 0 で不連続である. 実際に f は原点付近で振動するので原点において極限値
をもたないからである.� �
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中間値の定理と最大値・最小値の定理
中間値の定理� �
定理 33. 閉区間 I = [a, b] とする. 連続関数 f : I → R とする. f(a) 6= f(b) とする.

f(a) < µ < f(b) または f(b) < µ < f(a) を満たす任意の µ ∈ R に対し c ∈ (a, b) が
存在し

µ = f(c)

が成り立つ.� �
証明. f(a) < f(b) とする.

f(a) < µ < f(b)

なる µ に対して
A = {x ∈ [a, b]; f(x) < µ}

を定義すると. A は上に有界だから c = supA ∈ [a, b] が存在する. c が上限であること
により数列 {an} ⊂ A を a ≤ an ≤ c および an → c (n→ ∞) を満たすように選べる. 実
際に任意の ε > 0 に対して x ∈ A が存在し

x+ ε > supA

が成り立つので ε = 1/n として

c− 1

n
< an ≤ c

となるような an ∈ A がとれる. はさみうちの原理により an → c (n → ∞) となる.

f(an) < µ により f の連続性から
lim
n→∞

f(an) = f(c) ≤ µ.

一方 c = supA だから c < x ≤ b ならば µ ≤ f(x) であることがわかる. したがって f の
連続性により

f(c) = lim
x→c+0

f(x)

なので
µ ≤ f(c).

ふたつの不等式をあわせて f(c) = µ.

最大値・最小値の定理� �
定理 34. 閉区間 I = [a, b] として f : I → R を I で連続であるとする. このとき I

上に f の最大値M = max
x∈I

f(x) と最小値m = min
x∈I

f(x) が存在する.� �
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証明. Step 1:

まず f(I) が有界であることを示す. f(I) が有界でないと仮定すると, 各 n ≥ 1 に対
して

|f(an)| ≥ n

を満たす点 an ∈ [a, b] が存在する. {an} は有界列なのでボルツァノ・ワイエルシュトラ
スの定理により収束する部分列 {an(k)} で

lim
k→∞

an(k) = a0 (a0 ∈ [a, b])

なるものを選べる. ∣∣f (an(k))∣∣ ≥ n(k)

において k → ∞ とすると f の連続性により lim
k→∞

|f(an(k))| = |f(a0)| < ∞. 一方で
lim
k→∞

n(k) = ∞ なので矛盾する.

Step 2:

Step 1により

f(I) = {f(x); x ∈ [a, b]}

は有界である. したがって実数の連続性公理により, 上限, 下限が存在するので

M = sup f(I) = sup
a≤x≤b

f(x), m = inf f(I) = inf
a≤x≤b

f(x)

とおく. 上限に関する定理により各 n ≥ 1 に対して

M − 1

n
≤ bn ≤M

なる数列 {bn} ⊂ f(I) が存在する. bn = f(an), an ∈ I とすれば {an} は有界列なので
ボルツァノ・ワイエルシュトラスの定理により, 収束する部分列 {an(k)} を選べるので
an(k) → a0 ∈ [a, b] (k → ∞) とできる. したがって

M − 1

n(k)
≤ f(an(k)) ≤M

なので k → ∞ の極限をとると f の連続性により

M = f(a0)

を得る. したがってM = max
a≤x≤b

f(x). min についても同様である.
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連続性を用いた極限の公式 1� �
例 25. 対数関数の連続性を用いて極限の公式を得ることができる.

lim
x→0

log(1 + x)

x
= 1

である. 実際に lim
x→0

(1+ x)1/x = e であることと log の連続性により lim log = log lim

とできて

lim
x→0

log(1 + x)

x
= lim

x→0
log
(
(1 + x)1/x

)
= log

(
lim
x→0

(1 + x)1/x
)

= 1.� �
連続性を用いた極限の公式 2� �
例 26. 上の例で得た結果を用いる.

lim
x→0

ex − 1

x
= 1.

実際に t = ex − 1 とおくと t→ 0 (x→ 0). また x = log(t+ 1) なので
ex − 1

x
=

t

log(t+ 1)
→ 1 (x→ 0).

� �
一様連続性
連続性の定義において関数 f : R → R の点 a ∈ R における連続性を論じるときに

δ = δ(a, ε) は一般に a に依存して決まるから別の点 b ∈ R での連続性を論じようとし
た場合に同じ δ = δ(a, ε) を用いることは一般には出来ない. どの点でも共通に δ = δ(ε)

を選ぶことが可能な関数が知られていて, その様な関数がここで定義する一様連続な関
数と呼ばれるものである.

一様連続性� �
区間 I ⊂ R とする. 関数 f : I → R とする. f が I 上一様連続であるとは, 任意の
ε > 0 に対して ε のみに依存する δ = δ(ε) > 0 が存在し |x− y| < δ を満たす任意の
x, y ∈ I に対し

|f(x)− f(y)| < ε

が成り立つことをいう.� �
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babababababababababababababababababababab

r > 0 に対して
D(r) = {x, y ∈ R; |x− y| < r}

とする. 定義により直ちに確かめられるが f : I → R が一様連続であるという
ことの必要十分条件は任意の ε > 0 に対して δ = δ(ε) > 0 が存在し

sup
x,y∈I∩D(δ)

|f(x)− f(y)| ≤ ε

が成り立つことである.

関数が一様連続であるか判定することは容易ではない. 次の定理は一様連続であるこ
との十分条件を与える重要な定理である.� �
定理 35. 閉区間 I = [a, b] とする. 連続関数 f : I → R とする. このとき f は I 上
一様連続である.� �
証明. 結論を否定する. すなわち ε > 0 が存在し, 任意の δ > 0 に対して |x− y| < δ を
みたす x = xδ ∈ I, y = yδ ∈ I で

|f(x)− f(y)| ≥ ε

となるものが存在する. したがって δ = 1/nとして数列{an}, {bn}をan = x1/n, bn = y1/n
とすれば, すべての n ≥ 1 に対して

|an − bn| <
1

n
, |f(an)− f(bn)| ≥ ε

となる. I = [a, b] は有界だからボルツァノ・ワイエルシュトラスの定理により収束する
部分列 {an(k)}, {bn(k)} が存在し

|an(k) − bn(k)| <
1

n(k)
.

したがって an(k) → c (k → ∞) であるとすると

|bn(k) − c| ≤ |an(k) − bn(k)|+ |an(k) − c| → 0 (k → ∞)

なので {bn(k)} も同じ極限値 c ∈ I に収束する. f : I → R は連続なので

f(an(k)) → f(c) (k → ∞)

と
f(bn(k)) → f(c) (k → ∞)
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が成り立つ. したがって

|f(an(k))− f(bn(k))| ≤ |f(an(k))− f(c)|+ |f(c)− f(bn(k))| → 0 (k → ∞).

これは上の不等式

|f(an(k))− f(bn(k))| ≥ ε

に矛盾する.

三角関数の一様連続性� �
例 27. f(x) = sin x, x ∈ R はR 上一様連続である. 実際に加法定理により

| sin x− sin y| = 2

∣∣∣∣cos x+ y

2
sin

x− y

2

∣∣∣∣ ≤ 2

∣∣∣∣sin x− y

2

∣∣∣∣ ≤ |x− y|.

したがって任意の ε > 0 に対して δ = δ(ε) = ε > 0 と選べば |x− y| < δ を満たす任
意の x, y ∈ R に対して

| sin x− sin y| < ε

が成り立つ. これは cos についても同様に成り立つ.� �
指数関数の連続性� �
例 28. f(x) = ex, x ∈ R は連続である. 実際に a ∈ R とすると ε > 0 に対して
δ = δ(ε, a) = log(1 + εe−a) > 0 が存在して |x− a| < δ ならば

|ex − ea| < ε

が成り立つようにできる. ここで

|ex − ea| =

{
ea(ex−a − 1), x > a,

ea(1− ex−a), x < a

を用いた.� �
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指数関数の一様連続性� �
例 29. f(x) = ex, x ∈ R は一様連続でない. 実際に一様連続であるとすれば ε = 1

に対して定数 δ = δ(1) > 0 が存在し |x− y| < δ をみたす任意の x, y ∈ R に対して

|ex − ey| < 1

が成り立つ. x = n, y = n+ δ/2 とすれば, |x− y| < δ なので, この x, y に対しても
上の命題が成り立つはずだがN ≥ 1 を十分大きく選んでおけば任意の n ≥ N に対
して

|ex − ey| = en(eδ/2 − 1) > 1

となり矛盾する. したがって一様連続でない.� �
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微分係数, 導関数
微分係数� �
開区間 I ⊂ R とする. 関数 f : I → R とする. a ∈ I に対して, 極限値

A = lim
h→0

f(a+ h)− f(a)

h

が存在するとき f は a ∈ I において微分可能であるという. このとき

A = f ′(a)

とかき a における微分係数という. 任意の a ∈ I において微分可能であるとき f は
I 上で微分可能であるという.� �
導関数� �
開区間 I ⊂ R とする. I 上で微分可能な関数 f : I → R について a ∈ I に微分係数
の値 f ′(a) を対応させる関数 g : a ∈ I 7→ f ′(a) ∈ R を導関数といい

g = f ′

とかく.

f ′ =
df

dx

とかくこともある.� �
微分係数と導関数を混同しない様に注意してほしい. 微分係数は定数となるが導関数は
関数である.
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右微分係数・左微分係数� �
区間 I ⊂ R とする. a ∈ I とする. 関数 f : I → R の右側極限

lim
h→+0

f(a+ h)− f(a)

h
= f ′

+(a)

と左側極限
lim
h→−0

f(a+ h)− f(a)

h
= f ′

−(a)

が存在するとき, これらをそれぞれ a ∈ I における右微分係数 f ′
+(a), 左微分係数

f ′
−(a) という.� �� �
定理 36. 開区間 I ⊂ R とする. 関数 f : I → R が a ∈ I で微分可能であるための必
要十分条件は f の右微分係数と左微分係数が存在し

f ′
+(a) = f ′

−(a)

となることである.� �
証明. 極限値が存在することの必要十分条件の定理により明らかである.� �
定理 37. 開区間 I ⊂ R とする. 関数 f : I → R が a ∈ I で微分可能ならば f は a

において連続である.� �
証明.

f(x)− f(a) =
f(x)− f(a)

x− a
(x− a)

であるから

lim
x→a

(f(x)− f(a)) = lim
x→a

(
f(x)− f(a)

x− a
(x− a)

)
= lim

x→a

f(x)− f(a)

x− a
lim
x→a

(x− a)

= f ′(a) lim
x→a

(x− a) = 0.

� �
注意 3. 逆は成り立たない. 実際に関数 f(x) = |x|, x ∈ R はR 上で連続であるが

lim
h→0

f(0 + h)− f(0)

h
= lim

h→0

|h|
h

= ±1

となる. したがって原点 x = 0 における微分係数が存在しないので原点 x = 0 で微
分可能でない.� �
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閉区間における微分可能性・導関数� �
閉区間 I = [a, b] とする. f : I → R は (a, b) 上微分可能で a, b においては右側微分
係数 f ′

+(a), 左側微分係数 f ′
−(b) がそれぞれ存在するとき f は I上微分可能であると

いう. すなわち I = [a, b] における導関数は

f ′(x) =


f ′
+(a) (x = a)

f ′(x) (x ∈ (a, b))

f ′
−(b) (x = b)

によって定義される.� �
初等関数の導関数� �
定理 38. 初等関数の導関数の公式 (1) ∼ (5) が成り立つ.

(1)
(
xk
)′
= kxk−1, x ∈ R, k ∈ N \ {0}.

(2) (sin x)′ = cos x, x ∈ R.

(3) (cos x)′ = − sin x, x ∈ R.

(4) (ex)′ = ex, x ∈ R.

(5) (log |x|)′ = 1

x
, x ∈ R \ {0}.� �

証明. この証明において (1) ∼ (5)におけるそれぞれの関数を f とおくことにする.

(1)

f(x+ h)− f(x)

h
=

1

h

( ∑
l+m=k

k!

l!m!
xlhm − xk

)

=
1

h

∑
l+m=k
m≥1

k!

l!m!
xlhm

=
∑

l+m=k
m≥1

k!

l!m!
xlhm−1

= kxk−1 +
∑

l+m=k
m≥2

k!

l!m!
xlhm−1

→ kxk−1 (h→ 0).
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(2)

f(x+ h)− f(x)

h
=

sin(x+ h/2 + h/2)− sin(x+ h/2− h/2)

h

=
cos(x+ h/2) sin(h/2) + cos(x+ h/2) sin(h/2)

h

=
cos(x+ h/2) sin(h/2)

h/2

→ cos x (h→ 0).

(3) は (2) と同様の方法で示せる.

(4)

f(x+ h)− f(x)

h
=
ex+h − ex

h

= ex
(
eh − 1

h

)
→ ex (h→ 0).

(5)

f(x+ h)− f(x)

h
=

log(x+ h)− log x

h

= log (1 + h/x)1/h

= log(1 + y)1/yx (y = h/x)

=
1

x
log(1 + y)1/y

→ 1

x
(h→ 0).

ここで h→ 0 を考えているので |h/x| < 1/2 であるとした.

微分と四則演算� �
定理 39. 区間 I ⊂ R とする. 関数 f : I → R, g : I → R は I 上微分可能であるとす
る. このとき, 以下の (1) ∼ (4) の関数も I 上微分可能であり以下の公式が成り立つ.

(1) (cf)′ = cf ′, c ∈ R.

(2) (f + g)′ = f ′ + g′.

(3) (fg)′ = f ′g + fg′.

(4) (f/g)′ = g−2 (f ′g − fg′) , g 6= 0.� �
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証明. (3) と (4) だけ証明する.

(3) a ∈ I とする.

(fg)(a+ h)− (fg)(a)

h
=
f(a+ h)g(a+ h)− f(a)g(a)

h

=
(f(a+ h)− f(a)) g(a+ h) + f(a) (g(a+ h)− g(a))

h

→ f ′(a)g(a) + f(a)g′(a) (h→ 0).

(4) a ∈ I とする. g(a) 6= 0 かつ g は連続なので δ > 0 が存在して |x − a| < δ ならば
g(x) 6= 0 となる*1. 0 < |h| < δ なる h に対して
(f/g)(a+ h)− (f/g)(a)

h
=

1

h

(
f(a+ h)

g(a+ h)
− f(a)

g(a)

)
=

1

h

f(a+ h)g(a)− g(a+ h)f(a)

g(a+ h)g(a)

=
1

g(a+ h)g(a)

(f(a+ h)− f(a)) g(a)− f(a) (g(a+ h)− g(a))

h

→ f ′(a)g(a)− f(a)g′(a)

g(a)2
(h→ 0).

合成関数, 逆関数の微分法
合成関数の微分法� �
定理 40. 区間 I ⊂ R, J ⊂ R とする. 関数 f : I → R は I 上微分可能で f(I) ⊂ J

を満たすとする. 関数 g : J → R は J 上微分可能であるとする. このとき合成関数
g ◦ f : I → R も I 上微分可能で

(g ◦ f)′ = (g′ ◦ f) · f ′

が成り立つ.� �
証明. b ∈ J とする. 関数

η(h) =


g(b+ h)− g(b)

h
− g′(b) (h 6= 0)

0 (h = 0)

*1実際に例19の様に ε = |g(a)|/2すると. δ = δ(a, ε) > 0が存在し |x−a| < δならば
∣∣|g(x)|−|g(a)|

∣∣ < ε.
これにより |g(x)| > |g(a)|/2 を得る.
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と定義する. η : R → R は連続関数である.

b = f(a)

h = f(a+ k)− f(a)

とすると
(g ◦ f)(a+ k)− (g ◦ f)(a)

k
=
g(f(a+ k))− g(f(a))

k

=
g(b+ h)− g(b)

k

=
1

k
(g′(b)h+ η(h)h)

= g′(b)
f(a+ k)− f(a)

k
+ η(h)

f(a+ k)− f(a)

k

→ g′(b)f ′(a) + 0 · f ′(a) (k → 0)

= g′(b) · f ′(a)

= (g′ ◦ f)(a) · f ′(a).

� �
例 30. 関数 f : R → [0,∞) と g : R → (0,∞) を

f(x) = x2, x ∈ R

と
g(x) = ex, x ∈ R

によって定義する. このとき合成関数 g ◦f の導関数を以下の様に得ることができる.

(g ◦ f)′(x) = ey
∣∣
y=x2(x

2)′

= 2xex
2

, x ∈ R.� �� �
定理 41. (xα)′ = αxα−1, x ∈ (0,∞), α ∈ R が成り立つ.� �
証明. f(x) = xα とおく. このとき合成関数の微分法により

d log f

dx
=
f ′

f
.

一方で

log f = α log x
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なので
d log f

dx
=
α

x
.

ふたつの式を合わせると
f ′

f
=
α

x

なので両辺 f 倍して求める結果を得る.

逆関数の微分法� �
定理 42. 区間 I ⊂ R とする. f : I → R は狭義単調増加関数であるとする. f は I

上微分可能で f ′ 6= 0 を満たすとする. このとき f の逆関数 x = f−1(y), y ∈ f(I) に
対して f−1 も微分可能で

(
f−1
)′
(y) =

(
1

f ′

)
(x), y ∈ f(I), x ∈ I

が成り立つ. 狭義単調減少関数の場合も同様である.� �
証明. b ∈ f(I) とする. h 6= 0 を b+ h ∈ f(I) を満たすものとする.

x = f−1(b+ h),

a = f−1(b)

とおく. このとき
f−1(b+ h)− f−1(b)

h
=

x− a

f(x)− f(a)

→ 1

f ′(a)
(x→ a).

ここで f−1 の連続性を用いている.

逆三角関数の導関数� �
定理 43. 次の逆三角関数の導関数の公式 (1) ∼ (3) が成り立つ.

(1)
(
sin−1 x

)′
=

1√
1− x2

, x ∈ (−1, 1).

(2)
(
cos−1 x

)′
= − 1√

1− x2
, x ∈ (−1, 1).

(3)
(
tan−1 x

)′
=

1

1 + x2
, x ∈ R.� �
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証明. (1)のみ示す.

y = f(x) = sin x, x ∈ (−π/2, π/2)

の逆関数

f−1(y) = sin−1 y, y ∈ (−1, 1)

に逆関数の微分法を適用すると,

(f−1)′(y) =
(
sin−1 y

)′
=

(
1

f ′

)
(x)

=
1

cos x

=
1√

1− sin2 x

=
1√

1− y2
,

y ∈ (−1, 1). したがって変数の表記を y から x に戻して (1) を得る.

高階導関数
高階導関数� �
区間 I ⊂ R とする. n ≥ 1 とする. f : I → R が n 回微分可能なとき関数

f (n) =
dnf

dxn
=

d

dx

(
dn−1f

dxn−1

)
を f の n 次導関数という. ただし

f (0) =
d0f

dx0
= f

とする.� �
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� �
定理 44. n ≥ 1 とする. n 次導関数について次の公式 (1) ∼ (6) が成り立つ.

(1)
(
xk
)(n)

= k(k − 1) · · · (k − n+ 1)xk−n, x ∈ R, k ∈ N \ {0}.

(2) (xα)(n) = α(α− 1) · · · (α− n+ 1)xα−n, x ∈ (0,∞), α ∈ R \ {0}.

(3) (sin x)(n) = sin
(
x+

n

2
π
)
, x ∈ R.

(4) (cos x)(n) = cos
(
x+

n

2
π
)
, x ∈ R.

(5) (ex)(n) = ex, x ∈ R.

(6) (log |x|)(n) = (−1)n−1 (n− 1)!

xn
, x ∈ R \ {0}.� �

証明. (3)を示す. 数学的帰納法で証明する. まず n = 1 で成り立つ. n ≥ 2 で成り立つ
として

(sin x)(n+1) =
(
sin
(
x+

n

2
π
))′

= cos
(
x+

n

2
π
)

cos x = sin

(
x+

1

2
π

)
なので

(sin x)(n+1) = cos
(
x+

n

2
π
)
= sin

(
x+

n+ 1

2
π

)
.

ライプニッツの公式� �
定理 45. 区間 I ⊂ R とする. 関数 f : I → R, g : I → R は n 回微分可能であると
する. このとき

(fg)(n) =
∑

n1+n2=n

n!

n1!n2!
f (n1)g(n2)

が成り立つ.� �
証明. 数学的帰納法で示す. n = 1 のときは積の微分公式により成り立つ. n ≥ 1 で成り
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立つと仮定し

(fg)(n+1) =

( ∑
n1+n2=n

n!

n1!n2!
f (n1)g(n2)

)′

=
∑

n1+n2=n

n!

n1!n2!

(
f (n1)g(n2)

)′
=

∑
n1+n2=n

n!

n1!n2!

(
f (n1+1)g(n2) + f (n1)g(n2+1)

)
=

∑
(n1+1)+n2=n+1

n!(n1 + 1)

(n1 + 1)!n2!
f (n1+1)g(n2) +

∑
n1+(n2+1)=n+1

n!(n2 + 1)

n1!(n2 + 1)!
f (n1)g(n2+1).

第 1項で
n1 + 1 = l1

第 2項で
n2 + 1 = l2

と置き換えると

(fg)(n+1) =
∑

l1+n2=n+1

n!l1
l1!n2!

f (l1)g(n2) +
∑

n1+l2=n+1

n!l2
n1!l2!

f (n1)g(l2)

=
∑

n1+n2=n+1

n!n1

n1!n2!
f (n1)g(n2) +

∑
n1+n2=n+1

n!n2

n1!n2!
f (n1)g(n2)

=
∑

n1+n2=n+1

n!(n1 + n2)

n1!n2!
f (n1)g(n2)

=
∑

n1+n2=n+1

(n+ 1)!

n1!n2!
f (n1)g(n2).
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ロルの定理と平均値定理
ロルの定理� �
定理 46. I = [a, b] とする. 連続関数 f : I → R は開区間 (a, b) で微分可能であると
する. f(a) = f(b) が成り立つとする. このとき c ∈ (a, b) が存在して

f ′(c) = 0

が成り立つ.� �
証明. f が定数のとき定理は明らかである. f は定数でないとする. f は有界閉区間上
の連続関数なので最大値と最小値をとる. いま f は定数でないので

f(x) > f(a) = f(b)

となる x ∈ (a, b) があると仮定する. c ∈ (a, b) で最大値をとるとする. このとき

f(c) > f(a) = f(b)

となる. f(c) が最大値なので |h| > 0 を十分小さくとると
f(c+ h)− f(c)

h
< 0 (h > 0)

f(c+ h)− f(c)

h
> 0 (h < 0)

となる. これらの不等式について h→ 0 の極限をとることにより

f ′
+(c) ≤ 0,

f ′
−(c) ≥ 0

を得る. f は c で微分可能なので f ′(c) = f ′
+(c) = f ′

−(c) である. したがって f ′(c) = 0 を
得る. 最初の仮定で

f(x) < f(a) = f(b)

となる x ∈ (a, b) があると仮定する場合も同様である.
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コーシーの平均値定理� �
定理 47. I = [a, b] とする. 連続関数 f : I → R, g : I → R は開区間 (a, b) で微分可
能であるとする. このとき g′(x) 6= 0, x ∈ (a, b) ならば c ∈ (a, b) が存在して

f ′(c)

g′(c)
=
f(b)− f(a)

g(b)− g(a)

が成り立つ.� �
証明. 関数

F (x) = det

f(x) g(x) 1

f(b) g(b) 1

f(a) g(a) 1

 , x ∈ [a, b]

と定義する. F : [a, b] → R は連続で (a, b) で微分可能であり F (a) = F (b) = 0 である.

ロルの定理の仮定を満たしているので c ∈ (a, b) が存在して F ′(c) = 0 を満たす.

F ′ = det

 f ′ g′ 0

f(b) g(b) 1

f(a) g(a) 1


なので

F ′(c) = f ′(c)(g(b)− g(a))− g′(c)(f(b)− f(a)) = 0

となる.

平均値定理� �
定理 48. I = [a, b] とする. 連続関数 f : I → R は開区間 (a, b) で微分可能であると
する. このとき c ∈ (a, b) が存在して

f ′(c) =
f(b)− f(a)

b− a

が成り立つ.� �
証明. g(x) = x としてコーシーの平均値定理を適用する.� �
定理 49. I = [a, b] とする. 連続関数 f : I → R は (a, b) で微分可能であるとする.

このとき次の (1) ∼ (3) の場合が成り立つ.

(1) f ′(x) = 0, x ∈ (a, b) ならば f は定数関数である.

(2) f ′(x) ≥ 0, x ∈ (a, b) ならば f は単調増加関数である.

(3) f ′(x) ≤ 0, x ∈ (a, b) ならば f は単調減少関数である.� �
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証明. 任意の x1, x2 ∈ [a, b] で

a ≤ x1 < x2 ≤ b

を満たすものを固定して考える. このとき閉区間 I ′ = [x1, x2] における f : I ′ → R に対
する平均値の定理により

f(x2)− f(x1) = f ′(c)(x2 − x1)

となる c ∈ (x1, x2) が存在する. したがって (1), (2), (3) それぞれの場合について

(1) : f(x1) = f(x2).

(2) : f(x2) ≥ f(x1).

(3) : f(x2) ≤ f(x1).

これにより定理が従う.

ロピタルの定理
次のように定義される関数 F : I → R

F (x) =
f(x)

g(x)
, x ∈ I

の極限は f, g がともに f(x) → ∞, g(x) → ∞ や f(x) → 0, g(x) → 0 の場合は
∞
∞
,
0

0

などの不定形になってしまう. この様な場合に極限値を計算するための方法がロピタル
の定理である.
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ロピタルの定理 1� �
定理 50. 区間 I ⊂ R とする. 関数 f : I → R, g : I → R は a ∈ R の適当な近傍に
おいて微分可能で g′(x) 6= 0, x ∈ I とする.

lim
x→a

f(x) = lim
x→a

g(x) = 0

または

lim
x→a

f(x) = lim
x→a

g(x) = ∞

とする. このとき

lim
x→a

f ′(x)

g′(x)
= A

が成り立つならば

lim
x→a

f(x)

g(x)
= A

が成り立つ.� �
証明.

lim
x→a

f(x) = lim
x→a

g(x) = 0

の場合のみ示す. x ∈ I が a < x を満たすと仮定して区間 [a, x] においてコーシーの平
均値の定理により

f(x)

g(x)
=
f(x)− f(a)

g(x)− g(a)
=
f ′(c)

g′(c)

となる c = cx ∈ (a, x) が存在する. さらにこのとき θ = θx ∈ (0, 1) が存在して

c = (1− θ)a+ θx = a+ θ(x− a)

とかける. したがって
f(x)

g(x)
=
f(x)− f(a)

g(x)− g(a)

=
f ′(c)

g′(c)

=
f ′(a+ θ(x− a))

g′(a+ θ(x− a))

=
f ′(y)

g′(y)
.
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ここで y = a + θ(x − a) とおいた. θ ∈ (0, 1) に対し一様に |y − a| ≤ |x − a| なので
x→ a+ 0 のとき y → a+ 0 である. 仮定により

lim
y→a+0

f ′(y)

g′(y)

が存在するので

lim
x→a+0

f(x)

g(x)
= lim

y→a+0

f ′(y)

g′(y)
.

最後に変数の表記を x に戻して

lim
x→a+0

f(x)

g(x)
= lim

x→a+0

f ′(x)

g′(x)
.

x < a の場合も同様に考えることができて

lim
x→a−0

f(x)

g(x)
= lim

x→a−0

f ′(x)

g′(x)

が得られるので定理が示された.� �
注意 4. lim

x→a
f(x) = lim

x→a
g(x) = ∞ のとき φ = 1/g, ψ = 1/f とおいて 0/0 の不定形

としてロピタルの定理を用いることもできる.� �
同様にして以下のタイプのロピタルの定理を得る.

ロピタルの定理 2� �
定理 51. 関数 f : (a,∞) → R, g : (a,∞) → R は微分可能であるとする. g′(x) 6= 0,

x ∈ (a,∞) とする.

lim
x→∞

f(x) = lim
x→∞

g(x) = 0

または

lim
x→∞

f(x) = lim
x→∞

g(x) = ∞

とする. このとき

lim
x→∞

f ′(x)

g′(x)
= α

が成り立つとき

lim
x→∞

f(x)

g(x)
= α

が成り立つ.� �
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� �
例 31. 関数 f(x) = x/ex, x ∈ R とする. このとき

lim
x→∞

x

ex
= 0.

実際に分母と分子それぞれの極限は∞ に発散する. そこでロピタルの定理２を用
いて

x′

(ex)′
=

1

ex
→ 0 (x→ ∞).

� �� �
例 32.

lim
x→0

cos x

x
= lim

x→0

(cos x)′

x′
= − lim

x→0

sin x

1
= 0

とするのは間違いである. これはロピタルの定理の仮定を満たしていないからであ
る. 原点における極限を考えるので x ∈ (0, π/4] とすれば

cos x ≥ 1√
2

なので
lim
x→+0

cos x

x
≥ lim

x→+0

1√
2x

= ∞

となり発散する.� �
テイラーの定理
I ⊂ R とする. k ≥ 1 に対して f : I → R は k 階微分可能で f (k) が連続であるとき f

は I 上 k 回連続微分可能であるという. f が任意の k ≥ 1 に対して I 上 k 階微分可能な
とき f は I 上無限回微分可能であるという. 微分可能であれば導関数は連続となること
に注意.

テイラーの定理� �
定理 52. n ≥ 1 とする. f : [a, b] → R は [a, b] で n− 1 回連続微分可能であり (a, b)

で n 回微分可能であるとする. このとき θ ∈ (0, 1) が存在して

f(b) =
n−1∑
k=0

f (k)(a)

k!
(b− a)k +

f (n)(a+ θ(b− a))

n!
(b− a)n

が成り立つ. ここで
f (n)(a+ θ(b− a))

n!
(b− a)n

をラグランジュの剰余項という.� �
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� �
注意 5. 前章でも述べた様に閉区間 [a, b] の端点 a, b での微分可能性は左右の微分係
数 f ′

−(b), f
′
+(a) が存在するものと定めている.� �

証明.

K =
1

(b− a)n

(
f(b)−

n−1∑
k=0

f (k)(a)

k!
(b− a)k

)

とおき関数 F を以下の様に定義する.

F (x) = f(b)−
n−1∑
k=0

f (k)(x)

k!
(b− x)k −K(b− x)n, x ∈ [a, b].

F は [a, b] 上の連続関数である. このときK の定義の仕方から

F (a) = F (b) = 0.

また F は (a, b) で微分可能であるからロルの定理により c ∈ (a, b) が存在し F ′(c) = 0

となる.

F ′(x) = −
n−1∑
k=0

f (k+1)(x)

k!
(b− x)k +

n−1∑
k=1

f (k)(x)

(k − 1)!
(b− x)k−1 + nK(b− x)n−1

= −
n−1∑
k=0

f (k+1)(x)

k!
(b− x)k +

n−2∑
l=0

f (l+1)(x)

l!
(b− x)l + nK(b− x)n−1

= − f (n)(x)

(n− 1)!
(b− x)n−1 + nK(b− x)n−1

なので

− f (n)(c)

(n− 1)!
(b− c)n−1 + nK(b− c)n−1 = 0

が成り立つ. これにより

K =
f (n)(c)

n!

となる. また c ∈ (a, b) に対して θ ∈ (0, 1) が存在し c = a + θ(b− a) と表すことができ
る.
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babababababababababababababababababababab

テイラーの定理で n = 1 の場合を考えると θ ∈ (0, 1) が存在して

f(b) = f(a) + f ′(a+ θ(b− a))(b− a)

が成り立つ.

c = a+ θ(b− a)

とおくと c ∈ (a, b) であり

f(b) = f(a) + f ′(c)(b− a)

となる. この式を変形すると
f(b)− f(a)

b− a
= f ′(c)

を得る. これは平均値定理の式である. テイラーの定理は平均値定理のひとつの
拡張と見ることもできる.

冪級数展開
I = [a, b] とする. 連続関数 f : I → R は無限回微分可能であるとする. x ∈ (a, b] とす
る. テイラーの定理により θ = θ(x) ∈ (0, 1) が存在して

f(x) =
n−1∑
k=0

f (k)(a)

k!
(x− a)k +

f (n)(a+ θ(x− a))

n!
(x− a)n

が成り立つ. 剰余項に対して

lim
n→∞

f (n)(a+ θ(x− a))

n!
(x− a)n = 0

が成り立つとする. このとき∣∣∣∣∣f(x)−
n−1∑
k=0

f (k)(a)

k!
(x− a)k

∣∣∣∣∣ =
∣∣∣∣f (n)(a+ θ(x− a))

n!
(x− a)n

∣∣∣∣
→ 0 (n→ ∞)

が成り立つ. したがって無限級数が f(x) に収束する . すなわち

f(x) =
∞∑
k=0

f (k)(a)

k!
(x− a)k

= lim
n→∞

n−1∑
k=0

f (k)(a)

k!
(x− a)k
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と冪級数展開可能である. 冪級数展開のことをテイラー展開や整級数展開ということが
ある.

解析的� �
区間 I ⊂ R とする. 関数 f : I → R とする. f が a ∈ I の近傍で冪級数展開可能な
とき f は a において解析的であるという. I の任意の点で解析的な関数のことを実
解析的関数または解析関数という.� �
以下の関数の冪級数展開は知っておくと良いであろう.

基本的な関数の冪級数展開� �
定理 53. 次の冪級数展開の公式 (1) ∼ (3) が成り立つ.

(1) ex = 1 + x+
x2

2!
+ · · ·+ xn

n!
+ · · · =

∞∑
k=0

xk

k!
, x ∈ R.

(2) sin x = x− x3

3!
+
x5

5!
− · · ·+ (−1)n

x2n+1

(2n+ 1)!
+ · · · =

∞∑
k=0

(−1)k
x2k+1

(2k + 1)!
, x ∈ R.

(3) cos x = 1− x2

2!
+
x4

4!
− · · ·+ (−1)n

x2n

(2n)!
+ · · · =

∞∑
k=0

(−1)k
x2k

(2k)!
, x ∈ R.

� �
証明. (1)のみ示す. (2), (3) も同じ様に証明できる. 関数 f(x) = ex, x ∈ R とする.

f は R で何回でも微分可能である. 任意の k ≥ 1 に対して f (k)(0) = 1 である. 以下
において x > 0 を任意に選んだ定数とする. 区間 [0, x] としてテイラーの定理により
θ = θ(x) ∈ (0, 1) が存在して

f(x) =
n∑

k=0

xk

k!
+

xn+1

(n+ 1)!
eθx

が成り立つ.
|x|n

n!
e|x| → 0 (n→ ∞)

となる. したがって (1) が示された. x < 0 のときも同様である.� �
定理 54. f : R → R を

f(x) =

{
e−1/x (x > 0)

0 (x ≤ 0)

と定義する. このとき f は無限回微分可能で f (n)(0) = 0 (n ≥ 1) をみたす.� �
証明. x 6= 0 で無限回微分可能であることは明らかである.

dn

dxn
e−1/x = x−2nPn(x)e

−1/x
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の形になる. ここで P (x) は x の n− 1 次多項式である*1. したがって

lim
x→+0

f (n)(x) = lim
x→+0

dn

dxn
e−1/x = 0 (n ≥ 0)

であることがわかる. 次に x = 0 において n 回微分可能で f (n)(0) = 0 であることを示
そう. まず n = 1 のときは h > 0 として平均値定理より 0 < ch < h が存在し

f(h)

h
= f ′(ch) → 0 (h→ +0)

であるから x = 0 で微分可能で f ′(0) = 0. n ≥ 1 で正しいとして n+ 1 のときを考える.

すなわち f (n)(0) = 0 が成り立っているとする. このとき h > 0 とすると平均値定理よ
り 0 < dh < h が存在し

f (n)(h)

h
= f (n+1)(dh) → 0 (h→ +0)

なので f (n) は x = 0 で微分可能で f (n+1)(0) = 0. h < 0, h → −0 を考える場合は
f (n)(h) = 0 であるから同じ結果を得る. すなわち任意の階数の微分係数が x = 0 におい
て存在する. これより f は無限回微分可能で f (n)(0) = 0 (n ≥ 1).� �
上で定義した f : R → R は冪級数展開可能でない. 実際, 原点近傍でテイラー展開
できたとすると f(x) 6= 0 (x > 0) であるが

f(x) =
∞∑
k=0

f (k)(0)

k!
xk = 0

となり矛盾するからである.� �

*1よくわからなければ実際に 2回か 3回ぐらい微分してみれば良い.
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第10章 定積分I

区間の分割とダルブー和
ここでは区間 I = [a, b] として, 有界な関数 f : I → R のリーマン積分の定義について
考える.

区間の分割� �
区間 I の分割∆ を

∆ : a = x0 < x1 < · · · < xn−1 < xn = b

として分割の大きさ |∆| を

|∆| = max
1≤i≤n

(xi − xi−1)

と定める. [xi−1, xi] を小区間と呼ぶことがある.� �
リーマン積分可能であるための定義を述べるために分割∆ に伴う関数 f の囲む図形の
面積の上と下からの近似を次で定義する.

ダルブー和� �
分割∆ とする. ダルブー過剰和 S(∆) とダルブー不足和 s(∆) をそれぞれ

S(∆) =
n∑

i=1

Mi(xi − xi−1),

s(∆) =
n∑

i=1

mi(xi − xi−1)

と定義する. ここで

Mi = sup
x∈[xi−1,xi]

f(x), mi = inf
x∈[xi−1,xi]

f(x).

� �
区間 [a, b] の分割全体をD で表すことにする. ∆1, ∆2 ∈ D をふたつの分割として∆1 の
分点の集合が∆2 の分点の集合に含まれるとき∆1 ⊂ ∆2 と表すことにする. すなわち
∆2 は∆1 をさらに細かく分割したものである.
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� �
定理 55. M = sup

x∈[a,b]
f(x), m = inf

x∈[a,b]
f(x) とおく. 次の (1) ∼ (3) が得られる.

(1) 任意の分割∆ ∈ D に対してm(b− a) ≤ s(∆) ≤ S(∆) ≤M(b− a).

(2) ∆1 ⊂ ∆2, ∆1,∆2 ∈ D ならば s(∆1) ≤ s(∆2) ≤ S(∆2) ≤ S(∆1).

(3) 任意の∆1, ∆2 ∈ D について s(∆1) ≤ S(∆2) かつ s(∆2) ≤ S(∆1).� �
証明. (1) 分割∆ ∈ D を

∆ : a = x0 < x1 < · · · < xn = b

とすれば

m(b− a) =
n∑

i=1

m(xi − xi−1)

≤
n∑

i=1

mi(xi − xi−1)

= s(∆)

≤ S(∆)

=
n∑

i=1

Mi(xi − xi−1)

≤
n∑

i=1

M(xi − xi−1)

=M(b− a).

(2) 分割∆1 ⊂ ∆2 を

∆1 : a = x0 < x1 < · · · < xk−1 < xk < · · · < xn = b

∆2 : a = x0 < x1 < · · · < xk−1 < x∗ < xk < · · · < xn = b
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として示す. このとき

S(∆2) =
k−1∑
i=1

Mi(xi − xi−1) + sup
x∈[xk−1,x∗]

f(x)(x∗ − xk−1)

+ sup
x∈[x∗,xk]

f(x)(xk − x∗) +
n∑

i=k+1

Mi(xi − xi−1)

≤
k−1∑
i=1

Mi(xi − xi−1) + sup
x∈[xk−1,xk]

f(x)(x∗ − xk−1)

+ sup
x∈[xk−1,xk]

f(x)(xk − x∗) +
n∑

i=k+1

Mi(xi − xi−1)

=
k−1∑
i=1

Mi(xi − xi−1) + sup
x∈[xk−1,xk]

f(x)(xk − xk−1) +
n∑

i=k+1

Mi(xi − xi−1)

=
k−1∑
i=1

Mi(xi − xi−1) +Mk(xk − xk−1) +
n∑

i=k+1

Mi(xi − xi−1)

=
n∑

i=1

Mi(xi − xi−1)

= S(∆1).

s に関しても同様.

(3) ∆1 の分点に∆2 の分点を加えて新しい分割∆3 を考える. これは∆k ⊂ ∆3 k = 1, 2

を満たすので (2) により

s(∆1) ≤ s(∆3) ≤ S(∆3) ≤ S(∆2),

s(∆2) ≤ s(∆3) ≤ S(∆3) ≤ S(∆1).

上積分・下積分と積分の定義
あらゆる分割における過剰和の下限と不足和の上限を次のようにおく.
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上積分・下積分� �
区間 I = [a, b] とする. 関数 f : I → R とする. f の上積分と下積分をそれぞれ∫ b

a

f(x)dx = inf
∆∈D

S(∆),

∫ b

a

f(x)dx = sup
∆∈D

s(∆)

と定義する. このとき明らかに∫ b

a

f(x)dx ≥
∫ b

a

f(x)dx.

� �
ダルブーの定理� �
定理 56. 区間 I = [a, b] とする. 関数 f : I → R とする. f に対して

lim
|∆|→0

S(∆) =

∫ b

a

f(x)dx, lim
|∆|→0

s(∆) =

∫ b

a

f(x)dx

が成り立つ.� �
証明.

lim
|∆|→0

S(∆) =

∫ b

a

f(x)dx

のみ示す. s(∆)の方も同様である.∫ b

a

f(x)dx = inf
∆∈D

S(∆)

なので任意の ε > 0 に対して分割∆1 ∈ D で

∆1 : a = x′0 < x′1 < · · · < x′p = b

なるものが存在して ∫ b

a

f(x)dx ≤ S(∆1) <

∫ b

a

f(x)dx+
ε

2

が成り立つ. 分割∆ を

∆ : a = x0 < x1 < · · · < xn = b

と表すと
0 < δ1 < min

1≤i≤p
(x′i − x′i−1)

に対して |∆| < δ1 ならば∆1 の各小区間 [x′i−1, x
′
i], 1 ≤ i ≤ p の幅より |∆| の方が小さい

ので∆ の各小区間 [xi−1, xi], 1 ≤ i ≤ n は∆1 の分点を高々ひとつしか含まない. 実際
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に, もし小区間 [xi−1, xi] にふたつの点 xi−1 ≤ x∗1 < x∗2 ≤ xi を含むとすると [x∗1, x
∗
2] も分

割∆1 を構成するひとつの小区間であり [x∗1, x
∗
2] ⊂ [xi−1, xi] をみたし

min
1≤i≤p

(x′i − x′i−1) ≤ x∗2 − x∗1 ≤ xi − xi−1 ≤ |∆|

となる. このことは

|∆| < min
1≤i≤p

(x′i − x′i−1)

であることに反する. ∆ に∆1 の分点を加えた分割を∆2 とおく. ∆2 において∆ の小
区間 [xk−1, xk] が∆1 の分点 x′j を含むとき

Mk = sup
x∈[xk−1,xk]

f(x), Mk,1 = sup
x∈[xk−1,x

′
j ]

f(x), Mk,2 = sup
x∈[x′

j ,xk]

f(x)

とおく. このとき

Mk(xk − xk−1) =Mk(xk − x′j) +Mk(x
′
j − xk−1)

なので

Mk(xk − xk−1)−
(
Mk,1(x

′
j − xk−1) +Mk,2(xk − x′j)

)
= (Mk −Mk,1)(x

′
j − xk−1) + (Mk −Mk,2)(xk − x′j)

≤ (M −m)(xk − xk−1)

≤ (M −m)|∆|.

したがって, S(∆) − S(∆2) において上の評価を∆ の各区間に含まれている∆1 の分点
の個数だけ行うので

S(∆)− S(∆2) ≤ (p− 1)(M −m)|∆|

を得る. ここで p− 1 は∆1 の分点の個数である. したがって

0 < δ2 <
ε

2(p− 1)(M −m)

に対して δ = min(δ1, δ2) とおけば |∆| < δ ならば

S(∆)− S(∆2) <
ε

2

が成り立つ. したがって |∆| < δ に対して

0 ≤ S(∆)−
∫ b

a

f(x)dx = S(∆)− S(∆2) + S(∆1)−
∫ b

a

f(x)dx− (S(∆1)− S(∆2))

≤ S(∆)− S(∆2) + S(∆1)−
∫ b

a

f(x)dx

< ε
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が成り立つ. したがって
lim

|∆|→0
S(∆) =

∫ b

a

f(x)dx

が成り立つ. ここで上の不等式で

S(∆1) ≥ S(∆2)

を用いた.

リーマン積分可能であることの定義� �
I = [a, b] とする. 関数 f : I → R とする. f が∫ b

a

f(x)dx =

∫ b

a

f(x)dx

を満たすとき f は I でリーマン積分可能であるといい, その値を∫ b

a

f(x)dx =

∫ b

a

f(x)dx =

∫ b

a

f(x)dx

とかき f のリーマン積分という. リーマン積分可能であることを単に積分可能といっ
たりリーマン積分を定積分といったりすることがある.� �� �
例 33. 関数 f : [a, b] → R を

f(x) =

{
1 (x ∈ [a, b] ∩Q)

0 (x ∈ [a, b] \Q)

と定義する. 分割∆ ∈ D とする. 有理数の稠密性によりどの様に分割した小区間
[xi−1, xi] においても有理数が含まれているので S(∆) = b− a. 同様に無理数の稠密
性により s(∆) = 0 なので f は積分可能でない.� �
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第11章 定積分II

リーマン和
リーマン和� �
分割

∆ : a = x0 < x1 < · · · < xn−1 < xn = b

とする. 分割に伴う各小区間の元 ξi ∈ [xi−1, xi], 1 ≤ i ≤ n をひとつ選んで

ξ = (ξi)1≤i≤n = (ξ1, ξ2, . . . , ξn) ∈ [x0, x1]× [x1, x2]× · · · × [xn−1, xn]

とかくことにする. ξ は各小区間の元 ξi ∈ [xi−1, xi] の選び方に依存していることに
注意. このとき

R(ξ; ∆) =
n∑

i=1

f(ξi)(xi − xi−1)

をリーマン和という.� �� �
注意 6. 分割∆ とする. 任意の ξ に対して

s(∆) ≤ R(ξ; ∆) ≤ S(∆)

が成り立つ. すなわち各小区間の元 ξi ∈ [xi−1, xi] に対して一様に上の不等式は成り
立つ.� �
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積分可能であることの必要条件と十分条件
積分可能であることの必要条件� �
定理 57. 区間 I = [a, b] とする. 関数 f : I → R は積分可能であるとする. このとき

lim
|∆|→0

R(ξ; ∆) =

∫ b

a

f(x)dx

が任意の ξ = (ξi)1≤i≤n に対して成り立つ. すなわち, 任意の ε > 0 に対して δ =

δ(ε) > 0 が存在し |∆| < δ ならば任意の ξ に対して∣∣∣∣R(ξ; ∆)−
∫ b

a

f(x)dx

∣∣∣∣ < ε

が成り立つ.� �
証明. 分割∆ ∈ D としたとき, 任意の ξ に対して

s(∆) ≤ R(ξ; ∆) ≤ S(∆)

が成り立つ. 任意の ε > 0とする. f は積分可能なので, δ1 = δ1(ε) > 0が存在し |∆| < δ1
ならば ∫ b

a

f(x)dx− ε < S(∆) <

∫ b

a

f(x)dx+ ε.

同様に δ2 = δ2(ε) > 0 が存在し |∆| < δ2 ならば∫ b

a

f(x)dx− ε < s(∆) <

∫ b

a

f(x)dx+ ε

が成り立つ. したがって δ = min (δ1, δ2) > 0 に対して |∆| < δ ならば任意の ξ に対して∫ b

a

f(x)dx− ε < R(ξ; ∆) <

∫ b

a

f(x)dx+ ε.

このことは

lim
|∆|→0

R(ξ; ∆) =

∫ b

a

f(x)dx

が任意の ξ に対して成り立つことを意味する.� �
注意 7. この定理の極限における意味は ε > 0 に依存して δ = δ(ε) > 0 が決まり分
割∆ の幅 |∆| が δ の程度であれば各小区間の代表点 ξi ∈ [xi−1, xi] は任意に選ぶ事
ができると言う事である.� �
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積分可能であることの十分条件� �
定理 58. 区間 I = [a, b] とする. 関数 f : I → R とする.

lim
|∆|→0

R(ξ; ∆) = A

が任意の ξ に対して存在するとする. すなわち, 任意の ε > 0 に対して δ = δ(ε) > 0

が存在して |∆| < δ ならば任意の ξ に対して

|R(ξ; ∆)− A| < ε

が成り立つとする. このとき f は積分可能で

lim
|∆|→0

R(ξ; ∆) =

∫ b

a

f(x)dx

が成り立つ.� �
証明.

A = lim
|∆|→0

R(ξ; ∆)

が成り立つとする. このとき任意の ε > 0 に対して δ1 = δ1(ε) > 0 が存在し |∆| < δ1 な
らば任意の ξ に対して

−ε
2
< R(ξ; ∆)− A <

ε

2

が成り立つ.

R(ξ; ∆) ≤ S(∆)

である. また任意の η > 0 に対して ζi ∈ [xi−1, xi] が存在し

f(ζi) +
η

b− a
> Mi

なので ζ = (ζ1, ζ2, . . . , ζn) に対して

R(ζ; ∆) + η > S(∆).

したがって

sup
ξ
R(ξ; ∆) = S(∆).

同様に

inf
ξ
R(ξ; ∆) = s(∆).
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これより

−ε
2
≤ S(∆)− A ≤ ε

2
, −ε

2
≤ A− s(∆) ≤ ε

2

を得る*1. したがって

S(∆)− s(∆) = S(∆)− A+ A− s(∆)

なので |∆| < δ1 ならば
−ε ≤ S(∆)− s(∆) ≤ ε

が成り立つ. 上積分と下積分はそれぞれ S(∆) と s(∆) の下限と上限なので

0 ≤
∫ b

a

f(x)dx−
∫ b

a

f(x)dx ≤ S(∆)− s(∆) ≤ ε.

したがって ∫ b

a

f(x)dx =

∫ b

a

f(x)dx

(
=

∫ b

a

f(x)dx

)
.

ダルブーの定理により δ2 = δ2(ε) > 0 が存在し |∆| < δ2 ならば∣∣∣∣∣S(∆)−
∫ b

a

f(x)dx

∣∣∣∣∣ < ε

2
.

δ = min(δ1, δ2) > 0 とおくと |∆| < δ ならば∣∣∣∣∣A−
∫ b

a

f(x)dx

∣∣∣∣∣ =
∣∣∣∣∣A− S(∆) + S(∆)−

∫ b

a

f(x)dx

∣∣∣∣∣
≤ |A− S(∆)|+

∣∣∣∣∣S(∆)−
∫ b

a

f(x)dx

∣∣∣∣∣
<
ε

2
+
ε

2
= ε.

したがって

A =

∫ b

a

f(x)dx =

∫ b

a

f(x)dx.

*1実際に Ω = {R(ξ;∆); ξ}とおくと A+ ε/2 ∈ U(Ω), S(∆) = minU(Ω) ≤ A+ ε/2だからである. そ
の他も同様.
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積分可能な関数
積分可能であることの必要十分条件を得たが具体的な関数の積分可能性を判定するの
には有用ではない. 関数の満たす分かりやすい性質から積分可能であることの十分条件
が得られれば判定がしやすい. そのひとつが次の定理である.� �
定理 59. 区間 I = [a, b] とする. 連続関数 f : I → R とする. このとき f は I で積
分可能である.� �
証明. f : I → R は一様連続であるから任意の ε > 0 に対して ε′ = ε/(b − a) とおくと
δ = δ(ε′) > 0 が存在し |x− y| < δ なる任意の x, y ∈ I に対して

|f(x)− f(y)| < ε′

となる. したがって |∆| < δ なる分割に対しては各小区間 [xi−1, xi] において最大値と最
小値の差について

0 ≤Mi −mi < ε′

となる. このとき

S(∆)− s(∆) < ε′(b− a) = ε

を満たす. したがって

0 ≤
∫ b

a

f(x)dx−
∫ b

a

f(x)dx ≤ S(∆)− s(∆) < ε.

すなわち ∫ b

a

f(x)dx =

∫ b

a

f(x)dx

であるから f は積分可能である.

babababababababababababababababababababab

この定理により有界閉区間において連続関数を扱う範囲では積分可能性につい
て気にする必要がないのである.
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� �
例 34. 関数 f(x) = x, x ∈ [0, 1] は連続関数である. したがって

∫ 1

0

f(x)dx は存在
が保証されている. 区間 [0, 1] を n 等分する分割

∆ : 0 =
0

n
<

1

n
< · · · < i

n
< · · · < n

n
= 1

を考える. 分割の幅は |∆| = 1/n である. また代表点の取り方を ξi = i/n とする.

このように特別な分割と ξ を選んだときのリーマン和は

R(ξ; ∆) =
n∑

i=1

f

(
i

n

)
1

n
=

n∑
i=1

i

n2
=

1

n2

n∑
i=1

i =
1

n2

n(n+ 1)

2
→ 1

2
(n→ ∞)

であるが上の極限値は積分の値に等しい. したがって∫ 1

0

f(x)dx =
1

2
.

� �
定積分の基本性質� �
a < b のとき

•
∫ a

b

f(x)dx = −
∫ b

a

f(x)dx

•
∫ a

a

f(x)dx = 0

と約束する.� �
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定積分の基本性質� �
定理 60. 区間 I = [a, b] とする. 連続関数 f : I → R, g : I → R とする. このとき
以下の (1) ∼ (5) が成り立つ.

(1)

∫ b

a

cf(x)dx = c

∫ b

a

f(x)dx, c ∈ R.

(2)

∫ b

a

(f(x) + g(x)) dx =

∫ b

a

f(x)dx+

∫ b

a

g(x)dx.

(3)

∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx, c ∈ (a, b).

(4) f(x) ≤ g(x), x ∈ I ならば
∫ b

a

f(x)dx ≤
∫ b

a

g(x)dx.

(5)

∣∣∣∣∫ b

a

f(x)dx

∣∣∣∣ ≤ ∫ b

a

|f(x)|dx.

� �
証明. 分割∆ と ξ に対して f のリーマン和を

Rf (ξ; ∆) =
n∑

i=1

f(ξi)(xi − xi−1)

とかくことにする.

(1), (2)

Rcf (ξ; ∆) =
n∑

i=1

cf(ξi)(xi − xi−1) = cRf (ξ; ∆),

Rf+g(ξ; ∆) =
n∑

i=1

(f(ξi) + g(ξi)) (xi − xi−1) = Rf (ξ; ∆) + Rg(ξ; ∆)

となるので |∆| → 0 とすれば (1), (2) を得る.

(3) 分割
∆ : a = x0 < x1 < · · · < c < · · · < xn = b

として

∆1 : a = x0 < x1 < · · · < xl = c

∆2 : c = xl < xl+1 < · · · < xn = b
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とすると

Rf (ξ; ∆) =
n∑

i=1

f(ξi)(xi − xi−1)

=
l∑

i=1

f(ξi)(xi − xi−1) +
n∑

i=l+1

f(ξi)(xi − xi−1)

= Rf (ξ; ∆1) + Rf (ξ; ∆2)

→
∫ c

a

f(x)dx+

∫ b

c

f(x)dx (|∆| → 0).

(4)

Rf (ξ; ∆) ≤ Rg(ξ; ∆)

なので両辺 |∆| → 0 の極限で (4) を得る.

(5) このとき三角不等式を用いると次の不等式を得る.

|Rf (ξ; ∆)| =

∣∣∣∣∣
n∑

i=1

f(ξi)(xi − xi−1)

∣∣∣∣∣
≤

n∑
i=1

|f(ξi)|(xi − xi−1)

= R|f |(ξ; ∆).

この両辺で |∆| → 0 とすれば (5) を得る.� �
例 35. 関数 f : [a, b] → R を

f(x) =

{
1 (x ∈ [a, b] ∩Q)

−1 (x ∈ [a, b] \Q)

と定義する. |f | = 1 なので積分可能であるが例 33 により f は積分可能でない.� �
積分の平均値定理
積分の平均値定理� �
定理 61. 区間 I = [a, b] とする. 連続関数 f : I → R とする. このとき c ∈ (a, b) が
存在して

1

b− a

∫ b

a

f(x)dx = f(c)

が成り立つ.� �
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証明. f は有界閉区間上の連続関数であるから α, β ∈ I が存在し

M = max
x∈I

f(x) = f(α), m = min
x∈I

f(x) = f(β)

が成り立つ. ここでM = m のときは f を定数関数として定理が成り立つのでM > m

とする. また α < β とする. このとき中間値の定理により任意のm < µ < M に対して
c′ ∈ (α, β) が存在し µ = f(c′) が成り立つ. すなわち

m < f(c′) < M

が成り立つ. したがって δ > 0 が存在し x ∈ (c′ − δ, c′ + δ) に対して

m < f(x) < M

が成り立つので*2

m

∫ b

a

dx <

∫ b

a

f(x)dx < M

∫ b

a

dx

となり
m <

1

b− a

∫ b

a

f(x)dx < M.

したがって中間値の定理により c ∈ (α, β) が存在し

f(c) =
1

b− a

∫ b

a

f(x)dx

が成り立つ. α > β と仮定した場合も同様である.

*2例 19の様にすれば良い. 関数 g = M − f, h = f −mとおくと連続であり g(c′) > 0, h(c′) > 0であ
るから δ > 0が存在して x ∈ (c′ − δ, c′ + δ)に対して g(x) > 0, h(x) > 0となる様にできる.
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微分積分学の基本定理
積分関数� �
区間 I = [a, b] とする. 関数 f : I → R を積分可能であるとする. 定数 α ∈ I に対し
て関数 Fα : I → R を

Fα(x) =

∫ x

α

f(t)dt, x ∈ I

によって定義する. これを f の積分関数という.� �� �
最初に定積分を考えるときに f は有界であるとしている. すなわち

|f(x)| ≤M (x ∈ I).

したがって

|Fα(x)− Fα(x0)| =
∣∣∣∣∫ x

α

f(t)dt−
∫ x0

α

f(t)dt

∣∣∣∣
=

∣∣∣∣∫ x

x0

f(t)dt

∣∣∣∣
≤M(x− x0) → 0 (x→ x0)

なので Fα : I → R は連続である.� �
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不定積分� �
f の積分関数に任意の定数C ∈ R を加えた形で表される関数を f の不定積分と呼び∫

f(x)dx

とかく. すなわち不定積分は ∫
f(x)dx = Fα(x) + C

と表されるものである.� �
不定積分は積分関数の選び方によらない. 実際に f のふたつの積分関数を Fα, Fα′ とす
る. このとき

Fα(x)− Fα′(x) =

∫ x

α

f(t)dt−
∫ x

α′
f(t)dt

=

∫ x

α

f(t)dt+

∫ α′

x

f(t)dt

=

∫ α′

α

f(t)dt (定数)

となり Fα + C と Fα′ + C はどちらも f の不定積分であることに変わりはない.

原始関数� �
区間 I = [a, b] とする. 関数 f : I → R は積分可能とする. G′ = f となる関数G を
f の原始関数という.� �
次の定理は非常に重要である.

微分積分学の基本定理� �
定理 62. 区間 I = [a, b] とする. 連続関数 f : I → R とする. このとき次の (1) ∼ (4)

が成り立つ.

(1) F ′
α = f.

(2) f の原始関数は f の不定積分になる.

(3) f の不定積分は f の原始関数になる.

(4) G をひとつの原始関数とすると定積分は次の式により計算できる :∫ b

a

f(x)dx = [G(x)]ba = G(b)−G(a).

� �
証明. (1) x0 ∈ I として x > x0 の場合だけ考えれば十分. f は I = [a, b] において一様
連続なので任意の ε > 0 に対して δ = δ(ε) > 0 が存在し |s− t| < δ なる任意の s, t ∈ I
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に対して |f(s)− f(t)| < ε/2 が成り立つ. 0 < x− x0 < δ とする.

Fα(x)− Fα(x0) =

∫ x

α

f(t)dt−
∫ x0

α

f(t)dt

=

∫ x

x0

f(t)dt.

したがって

m ≤ Fα(x)− Fα(x0)

x− x0
≤M.

ここで
M = max

t∈[x0,x]
f(t), m = min

t∈[x0,x]
f(t)

とおいた. したがって ∣∣∣∣Fα(x)− Fα(x0)

x− x0
− f(x0)

∣∣∣∣ ≤M −m.

α, β ∈ [x0, x] が存在しM = f(α), m = f(β) とかけるので
M − f(x0) <

ε

2
, f(x0)−m <

ε

2

が成り立つ. したがって
0 < M −m =M − f(x0) + f(x0)−m < ε.

(2) 任意の原始関数をG とする. (G − Fα)
′ = G′ − F ′

α = 0 となるからG − Fα = C. し
たがってG = Fα + C となる. これはG が不定積分であることを意味する.

(3) 任意の不定積分は Fα + C と書ける. これを微分すると (Fα + C)′ = F ′
α = f となる.

これは Fα + C が原始関数であることを意味する.

(4) (2) により任意の原始関数Gは α = a としてG = Fa + C. したがって
G(b)−G(a) = Fa(b)− Fa(a)

= Fa(b)

=

∫ b

a

f(x)dx.

(4)の別証明 (2) の結果を用いずに微分法の平均値定理を用いて, 以下の様にも証明で
きる. f の原始関数G : [a, b] → R とする. 連続関数は有界閉区間で積分可能なので, 任
意の ε > 0 に対して δ = δ(ε) > 0 が存在し |∆| < δ ならば任意の ξ に対して∣∣∣∣∣

n∑
i=1

f(ξi)(xi − xi−1)−
∫ b

a

f(x)dx

∣∣∣∣∣ =
∣∣∣∣R(ξ; ∆)−

∫ b

a

f(x)dx

∣∣∣∣ < ε.
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とくに平均値定理により存在が保証される ci ∈ (xi−1, xi) で
G(xi)−G(xi−1)

xi − xi−1

= G′(ci) = f(ci)

なるものに対して上の式が成り立つから

0 ≤

∣∣∣∣∣
n∑

i=1

f(ci)(xi − xi−1)−
∫ b

a

f(x)dx

∣∣∣∣∣ =
∣∣∣∣∣

n∑
i=1

(G(xi)−G(xi−1))−
∫ b

a

f(x)dx

∣∣∣∣∣
=

∣∣∣∣G(a)−G(b)−
∫ b

a

f(x)dx

∣∣∣∣
< ε.

babababababababababababababababababababab

高校では f の原始関数G とすると f の定積分は∫ b

a

f(x)dx = [G(x)]ba = G(b)−G(a)

と習ったかもしれない. リーマン積分を前章までの様に定義するとこの式は定理
として導かれるものである.

� �
例 36. 連続関数 f(x) = x2, x ∈ [0, 1] の定積分∫ 1

0

x2dx

を原始関数を用いて求めてみよう.

G(x) =
1

3
x3, x ∈ [0, 1]

は f の原始関数のひとつであることがわかるa. したがって∫ 1

0

x2dx =

[
1

3
x3
]1
0

=
1

3
.

a簡単だと思う原始関数をひとつ選べば十分である.� �
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積分の計算法
初等関数の不定積分� �
定理 63. 初等関数の不定積分 (1) ∼ (6) について以下の公式が成り立つ.

(1)

∫
xαdx =

1

α + 1
xα+1, x ∈ (0,∞), α ∈ R \ {−1}.

(2)

∫
1

x
dx = log |x|, x ∈ R \ {0}.

(3)

∫
sin xdx = − cos x, x ∈ R.

(4)

∫
cos xdx = sin x, x ∈ R.

(5)

∫
exdx = ex, x ∈ R.

(6)

∫
log x = x log x− x, x ∈ (0,∞).

ただし積分定数C は省いた.� �
部分積分法� �
定理 64. 区間 I = [a, b] とする. f : I → R, g : I → R は微分可能で導関数が連続
であるとする. このとき∫ b

a

f(x)g′(x)dx = [f(x)g(x)]ba −
∫ b

a

f ′(x)g(x)dx

が成り立つ.� �
証明. 積に対する微分により

(fg)′ = f ′g + fg′

である. また fg は (fg)′ の原始関数なので∫ b

a

(fg)′ (x)dx = [(fg)(x)]ba

=

∫ b

a

f ′(x)g(x)dx+

∫ b

a

f(x)g′(x)dx.



108 第 12章 不定積分と原始関数
置換積分法� �
定理 65. 区間 I = [a, b], J = [c, d] とする. 連続関数 f : I → R とする. 関数
φ : J → R は微分可能かつ導関数が連続で φ(t) ∈ I, t ∈ J, φ(c) = a, φ(d) = b を満
たすとする. このとき ∫ b

a

f(x)dx =

∫ d

c

f(φ(t))φ′(t)dt

が成り立つ.� �
証明. Fa(x) =

∫ x

a
f(t)dt, x ∈ I とすると微分可能である. また

(Fa ◦ φ)′ (t) = f(φ(t))φ′(t)

なので Fa ◦ φ は f(φ)φ′ の原始関数である. したがって∫ d

c

f(φ(t))φ′(t)dt = [(Fa ◦ φ) (t)]dc

= Fa(φ(d))− Fa(φ(c))

= Fa(b)

=

∫ b

a

f(x)dx.

babababababababababababababababababababab

上の公式で上端 b を x にかえて不定積分についても

•
∫
f(x)g′(x)dx = fg −

∫
f ′(x)g(x)dx

•
∫
f(x)dx =

∫
f(φ(t))φ′(t)dt

が成り立つ. ただし積分定数C は省いた.

� �
例 37. 関数 f : [0, 1] → R を

f(x) = xex, x ∈ [0, 1]

と定める. このとき部分積分法により∫ 1

0

xexdx = [xex]10 −
∫ 1

0

exdx = [xex]10 − [ex]10 = [(x− 1)ex]10 = 1.

� �
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� �
例 38. 関数 g : [0, 1] → R を

g(x) =
1

(1 + x2)2
, x ∈ [0, 1]

と定める. このとき t = tan x とおく. 置換積分法により∫ 1

0

1

(1 + x2)2
dx =

∫ π/4

0

cos4 t

cos2 t
dt

=

∫ π/4

0

cos2 tdt

=

∫ π/4

0

1 + cos 2t

2
dt

=

[
t

2
+

1

4
sin 2t

]π/4
0

=
1

8
(π + 2).� �
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第13章 広義積分

特異点を持つ関数の広義積分
babababababababababababababababababababab

α > 0 として関数 f : (0, 1] → R を

f(x) =
1

xα
, x ∈ (0, 1]

とすると f は区間 (0, 1] で有界でない. とくに x = 0 で定義できない. このよう
な点を特異点と呼ぶことがある. 有界でない関数の積分を考える.

広義積分（特異積分）� �
連続関数 f : [a, b) → R は lim

x→b−0
|f(x)| = ∞ を満たすとする. このとき [a, b) での広

義積分を ∫ b

a

f(x)dx = lim
ϵ→+0

∫ b−ϵ

a

f(x)dx,

で定義する. 同様に連続関数 g : (a, b] → R は lim
x→a+0

|g(x)| = ∞ を満たすとする. こ
のとき (a, b] での広義積分を∫ b

a

g(x)dx = lim
ϵ→+0

∫ b

a+ϵ

g(x)dx,

で定義する.� �
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� �
例 39. 関数 f : (0, 1] → R を f(x) = 1/xα, x ∈ (0, 1], α > 0 と定義する. α 6= 1 の
とき ∫ 1

ϵ

1

xα
dx =

1

1− α

[
x1−α

]1
ϵ

により

lim
ϵ→+0

∫ 1

ϵ

1

xα
dx =


1

1− α
(α ∈ (0, 1))

∞ (α ∈ (1,∞))

となる. α = 1 のときは∫ 1

ϵ

1

x
dx = [log x]1ϵ = − log ϵ→ ∞ (ϵ→ +0).

0 < x < 1 のとき
1

xα1
≥ 1

xα2
, α1 ≥ α2

となり指数 α > 0 が大きいと被積分関数の特異性が顕著になり x = 0の近傍では広
義積分できない.� �
無限区間における広義積分
babababababababababababababababababababab

α > 0 として関数 f : [1,∞) → R を

f(x) =
1

xα
, x ∈ [1,∞)

と定義する. このとき f は I = [1,∞) において連続かつ有界であるが考えてい
る区間が無限区間である. このような無限区間の上での積分を考える.
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広義積分（無限積分）� �
連続関数 f : [a,∞) → R とする. このとき [a,∞) での広義積分を∫ ∞

a

f(x)dx = lim
R→∞

∫ R

a

f(x)dx,

で定義する. 同様に連続関数 g : (−∞, b] → R とする. このとき (−∞, b] での広義積
分を ∫ b

−∞
g(x)dx = lim

R→−∞

∫ b

R

g(x)dx,

で定義する.� �� �
例 40. f : [1,∞) → R を f(x) = 1/xα, x ∈ [1,∞), α > 0 と定める. α 6= 1 のとき∫ R

1

1

xα
dx =

1

1− α

[
x1−α

]R
1

により

lim
R→∞

∫ R

1

1

xα
dx =


1

α− 1
(α ∈ (1,∞))

∞ (α ∈ (0, 1))

となる. α = 1 のときは∫ R

1

1

x
dx = [log x]R1 = logR → ∞ (R → ∞).

1 < x <∞ のとき
1

xα1
≤ 1

xα2
, α1 ≥ α2

となり指数 α > 0 が小さいと被積分関数の減衰が十分でないので無限遠方では広義
積分できない.� �
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� �
注意 8. 広義積分の定義に関して f が [a, c)∪ (c, b] において連続で c ∈ (a, b) におい
て特異点をもつとする. このとき広義積分は∫ b

a

f(x)dx = lim
ϵ1→+0

∫ c−ϵ1

a

f(x)dx+ lim
ϵ2→+0

∫ b

c+ϵ2

f(x)dx

と定義する. この様に独立した ϵi, i = 1, 2 に対して定めるのである. 同様にR上の
連続関数 g に対しても極限操作を独立に行い∫ ∞

−∞
g(x)dx = lim

R1→∞

∫ R1

0

g(x)dx+ lim
R2→∞

∫ 0

−R2

g(x)dx,

によって定義する.� �� �
注意 9 (誤りの例). 関数 f(x) = 1/x, x ∈ [−1, 0)∪ (0, 1] は奇関数であるということ
から ∫ 1

−1

1

x
dx = lim

ϵ→0

∫ ϵ

−ϵ

1

x
dx = 0

とするのは広義積分としては誤りであるa. 正しくは次の様にする.∫ 1

−1

1

x
dx = lim

ϵ1→−0

∫ ϵ1

−1

1

x
dx+ lim

ϵ2→+0

∫ 1

ϵ2

1

x
dx

= lim
ϵ1→−0

[log |x|]ϵ1−1 + lim
ϵ2→+0

[log x]1ϵ2 .

この極限はそれぞれ収束しないので広義積分は存在しない.

aこの様な積分はコーシーの主値積分と呼ばれるがここでは扱わない.� �
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広義積分の収束判定法
コーシーの収束条件� �
定理 66. 次の (1), (2) が成り立つ.

(1) 連続関数 f : (a, b] → R は lim
x→a+0

|f(x)| = ∞ を満たすとする.

∫ b

a

f(x)dx

が収束するための必要十分条件は, 任意の ε > 0 に対して δ = δ(ε) > 0 が存在
し a < δ1 < δ2 ≤ a+ δ なる任意の δ1, δ2 に対して∣∣∣∣∫ δ2

δ1

f(x)dx

∣∣∣∣ < ε

が成り立つことである.

(2) 有界な連続関数とする f : [a,∞) → R とする.∫ ∞

a

f(x)dx

が収束するための必要十分条件は任意の ε > 0 に対して L = L(ε) > 0 が存在
し L < r < R なる任意の r, R > 0 に対して∣∣∣∣∫ R

r

f(x)dx

∣∣∣∣ < ε

が成り立つことである.� �
証明. （必要性）仮定により

A =

∫ b

a

f(x)dx = lim
x→a+0

∫ b

x

f(t)dt

とおくことができる. すなわち任意の ε > 0 に対して δ = δ(ε) > 0 が存在して 0 <

x− a < δ ならば ∣∣∣∣∫ b

x

f(t)dt− A

∣∣∣∣ < ε/2

である. したがって a < δ1 < δ2 < a+ δ に対して∣∣∣∣∫ δ2

δ1

f(x)dx

∣∣∣∣ = ∣∣∣∣∫ b

δ1

f(x)dx−
∫ b

δ2

f(x)dx

∣∣∣∣ < ε.
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（十分性）任意の ε > 0 とする. 仮定により η = ε/3 に対して δ = δ(η) > 0 が存在し
a < δ1 < δ2 ≤ a+ δ なる任意の δ1, δ2 に対して∣∣∣∣∫ δ2

δ1

f(x)dx

∣∣∣∣ < η

が成り立つ.

F (x) =

∫ b

x

f(t)dt

を考える. このとき数列{an}でan > a, lim
n→∞

an = aなるものを考えるとK1 = K1(δ) ≥ 1

が存在し n ≥ K1 ならば

0 < an − a < δ

が成り立つ. したがって仮定により n,m ≥ K1 ならば

|F (an)− F (am)| =
∣∣∣∣∫ am

an

f(t)dt

∣∣∣∣ < η

なので {F (an)} はコーシー列となるので極限値 A ∈ R が存在する. すなわち N1 =

N1(η) ≥ 1 が存在して n ≥ N1 ならば

|F (an)− A| < η

が成り立つ. 一方で別の数列 {bn} で bn > a, lim
n→∞

bn = a をみたすものを考えると
K2 = K2(δ) ≥ 1 が存在し n ≥ K2 ならば

0 < bn − a < δ

が成り立つ. したがって {F (bn)} もコーシー列となるので極限値B ∈ R が存在する. す
なわちN2 = N2(η) ≥ 1 が存在して n ≥ N2 ならば

|F (bn)− B| < η.

N = max(K1, N1, K2, N2) とおくと n ≥ N ならば

0 ≤ |A− B| = |A− F (an) + F (an)− F (bn) + F (bn)− B| < ε.

以上によりA = B となる. すなわち任意の {cn} で cn > a, cn → a (n → ∞) なるもの
に対して lim

n→∞
F (cn) = A がいえた. したがって定理 24 により lim

x→a+0
F (x) = A となる.

(2) も同様である.
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(1)の十分性の別証明 任意の ε > 0 とする. 仮定により η = ε/4 に対して δ = δ(η) > 0

が存在し a < δ1 < δ2 ≤ a+ δ なる任意の δ1, δ2 に対して∣∣∣∣∫ δ2

δ1

f(x)dx

∣∣∣∣ < η

が成り立つ.

F (x) =

∫ b

x

f(t)dt, x ∈ (a, b)

とする. x0 = a+ δ とおく.

F (x) = F (x0)− (F (x0)− F (x))

= F (x0)−
∫ x

a+δ

f(t)dt

= F (x0) +

∫ a+δ

x

f(t)dt

とかけるので a < x < x0 に対して

F (x0)− η < F (x) < F (x0) + η

となり有界である. 任意の a < x < x0 に対して

g(x) = sup
a<t≤x

F (t), h(x) = inf
a<t≤x

F (t)

とおくと

|g(x)− h(x)| ≤ 2η < ε

である. このことは

lim
x→a+0

|g(x)− h(x)| = 0

を意味する. また g は単調増加関数なので

lim
x→a+0

g(x) = A

が存在する. 実際に g に下限

A = inf
x∈(a,x0)

g(x)

が存在するので, 任意の η > 0 に対して γ = γ(η) > 0 で γ < x0 − a なるものが存在し
x∗ = a+ γ に対して

A ≤ g(x∗) < A+ η
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となる. したがって任意の x ∈ (a, a+ γ) に対して

−η < g(x)− A < η.

このことは

lim
x→a+0

g(x) = A

を意味する. 同様に

lim
x→a+0

h(x) = A

であることが確かめられる.

h(x) ≤ F (x) ≤ g(x), x ∈ (a, x0)

なので

lim
x→a+0

F (x) = A

となる.� �
注意 10. 次の不等式

|f(x)| ≤ g(x), x ∈ (a, b]

を満たす連続関数 g : (a, b] → R が存在し∫ b

a

g(x)dx

が収束すれば ∫ b

a

f(x)dx

も収束する. 実際に任意の ε > 0 に対して δ = δ(ε) > 0 が存在し a < δ1 < δ2 < a+ δ

なる任意の δ1, δ2 に対して∣∣∣∣∫ δ2

δ1

f(x)dx

∣∣∣∣ ≤ ∫ δ2

δ1

|f(x)| dx ≤
∫ δ2

δ1

g(x)dx < ε

となるからである.� �� �
以上のことにより連続関数 f について |f | ≤ g をみたし g が広義積分可能であれば
f は広義積分可能である. 実際にはこの事実に基づいて広義積分可能性を判定する
ことが多い.� �
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� �
例 41. ∫ ∞

0

sin x

x
dx

は収束する. 実際に関数 f を

f(x) =


sin x

x
(x 6= 0)

1 (x = 0)

と定義すると f は連続関数であるから

F (t) =

∫ 1

t

f(x)dx, t ∈ [0, 1]

も連続関数となり∫ 1

0

f(x)dx = F (0) = lim
t→+0

F (t) = lim
t→+0

∫ 1

t

sin x

x
dx

は存在する. したがって非有界区間での広義積分が問題となる.∣∣∣∣∫ R

r

sin x

x
dx

∣∣∣∣ = ∣∣∣∣[−cos x

x

]R
r
−
∫ R

r

cos x

x2
dx

∣∣∣∣
≤ 1

R
+

1

r
+

∫ R

r

1

x2
dx

=
2

r
→ 0 (r → ∞).

ここで ∫ ∞

0

1

x
dx = ∞

だったことに注意する. すなわち振動する項 sin x があることによって広義積分が収
束したのである.� �
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� �
例 42. 例 41 で振動する項の絶対値をとったもの∫ ∞

0

| sin x|
x

dx

は発散する. 実際に n ∈ N ∪ {0} に対して∫ (n+1)π

nπ

| sin x|
x

dx ≥ 1

(n+ 1)π

∫ (n+1)π

nπ

| sin x|dx

=


− 1

(n+ 1)π

∫ 2π

π

sin xdx (n :奇数)

1

(n+ 1)π

∫ π

0

sin xdx (n :偶数)

=
2

(n+ 1)π
(n = 0, 1, 2, · · · )

が得られる. これにより∫ ∞

0

| sin x|
x

dx =
∞∑
n=0

∫ (n+1)π

nπ

| sin x|
x

dx ≥
∞∑
n=0

2

(n+ 1)π
= ∞.

ここで次の事実
∞∑
n=1

1

n
= ∞

を使った. これを示すために k ∈ N に対して関数 f : [k,∞) → (0,∞) を f(x) = 1/x,

x ∈ [k,∞) と定義する. x ∈ [n, n+ 1], n ≥ k とすると
1

n+ 1
≤ 1

x
≤ 1

n
.

この両辺を積分し
1

n+ 1
≤
∫ n+1

n

1

x
dx ≤ 1

n

したがって l ≥ k に対して ∫ l+1

k

1

x
dx ≤

l∑
n=k

1

n

左辺は l → ∞ で発散するので
∞∑
n=1

1

n
= ∞.

� �
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ガンマ関数とベータ関数
ガンマ関数
ガンマ関数を定義する. そのために広義積分

I =

∫ ∞

0

e−xxp−1dx, p > 0

が収束することを示す. 積分の範囲を (0, 1) と [1,∞) に分割し

I = I1 + I2 =

∫ 1

0

e−xxp−1dx+

∫ ∞

1

e−xxp−1dx

とする.

e−xxp−1 ≤ xp−1, x ∈ (0, 1)

が成り立つ. ϵ ∈ (0, 1) に対して次を得る∫ 1

ϵ

xp−1dx =

[
1

p
xp
]1
ϵ

=
1

p
(1− ϵp) → 1

p
(ϵ→ 0).

これにより I1 の収束がいえた. 一方 I2 に関しては
M = e−(p+1)(p+ 1)p+1

に対して
x2(e−xxp−1) ≤M, x ∈ [1,∞)

がわかるので
e−xxp−1 ≤ M

x2
, x ∈ [1,∞)

を得る. R > 1 に対して次を得る∫ R

1

M

x2
dx =M

[
−1

x

]R
1

=M

(
1− 1

R

)
→M (R → ∞).

これにより I2 の収束をいえた. 以上のことをまとめて I < ∞ がいえた. 以上により次
の様にガンマ関数を定義できる.

ガンマ関数� �
p によって定まる

Γ (p) =

∫ ∞

0

e−xxp−1dx, p > 0

をガンマ関数という.� �� �
定理 67. ガンマ関数 Γ は, 次を満たす.

(1) Γ (p+ 1) = pΓ (p), p > 0.

(2) Γ (1) = 1, Γ (n+ 1) = n!, n ∈ N.� �
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証明. (1) 部分積分法により∫ ∞

0

e−xxpdx = lim
R→∞

∫ R

0

e−xxpdx

= lim
R→∞

(
[−e−xxp]R0 + p

∫ R

0

e−xxp−1dx

)
= lim

R→∞
[−e−xxp]R0 + p lim

R→∞

∫ R

0

e−xxp−1dx

= pΓ (p).

(2) 数学的帰納法で証明する. まず n = 1 のときは成り立つことが (1) によりわかる.

n ≥ 1 で成り立つと仮定して
Γ ((n+ 1) + 1) = (n+ 1)Γ (n+ 1)

を (1) で p = n+ 1 として得る. 仮定により
Γ (n+ 1) = n!

なので
Γ ((n+ 1) + 1) = (n+ 1)n! = (n+ 1)!

を得る. したがって n+ 1 で成り立つが示せた.

ベータ関数
ベータ関数を定義するために, 広義積分

I =

∫ 1

0

xp−1(1− x)q−1dx, p, q > 0

が収束することを示す. p, q ≥ 1 のとき I は広義積分でないので 0 < p, q < 1 の場合を
考える. 積分区間を (0, 1/2], (1/2, 1) に分けて考える.

I = I1 + I2 =

∫ 1/2

0

xp−1(1− x)q−1dx+

∫ 1

1/2

xp−1(1− x)q−1dx

ϵ ∈ (0, 1/2) に対して
xp−1(1− x)q−1 ≤ xp−1

2q−1
, x ∈ [ϵ, 1/2]

が成り立つ.

1

2q−1

∫ 1/2

ϵ

xp−1dx =
1

2q−1p
[xp]1/2ϵ

=
1

2q−1p

(
1

2p
− ϵp

)
→ 1

2p+q−1p
(ϵ→ 0)
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を 0 < p < 1 に対して得る. これで I1 の収束がいえた. I2 については t = 1− x とした
置換積分法により ∫ 1−ϵ

1/2

xp−1(1− x)q−1dx =

∫ 1/2

ϵ

tq−1(1− t)p−1dt

なので 0 < q < 1に対して I2 の収束もいえる. また 0 < p < 1, q ≥ 1や p ≥ 1, 0 < q < 1

の場合なども同様である.

ベータ関数� �
(p, q) によって定まる

B(p, q) =

∫ 1

0

xp−1(1− x)q−1dx, p, q > 0

をベータ関数という.� �
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