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はじめに

リーマン積分の復習とルベーグ積分への動機づけ
区間の分割� �
区間 I = [a, b] の分割∆ を

∆ : a = x0 < x1 < · · · < xl = b

と表すことにする. また I の分割全体をD と表すことにする.� �
ダルブー和� �
f のダルブー過剰和 S(f ; ∆) とダルブー不足和 s(f ; ∆) をそれぞれ以下で定義する.

S(f ; ∆) =
l∑

k=1

(
sup

x∈[xk−1,xk]

f(x)

)
(xk − xk−1),

s(f ; ∆) =
l∑

k=1

(
inf

x∈[xk−1,xk]
f(x)

)
(xk − xk−1).

� �
リーマン積分の定義� �
f : I → R がリーマン積分可能
であるとは

inf
∆∈D

S(f ; ∆) = sup
∆∈D

s(f ; ∆)

が成り立つことをいう. このとき共通の値を

A =

∫ b

a

f(x)dx

とかき f のリーマン積分と呼ぶ.� �
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� �
例 1. 有理数全体の集合Qは可算無限である. 区間 I に含まれる有理数全体S = Q∩I
も同様に可算無限である. したがって

S = {qk ∈ Q; k ∈ N}

と表すことができる. l ≥ 1 に対して q1, q2, . . . , ql ∈ S として, 関数列を

fl(x) =

{
1 (x ∈ {q1, q2, . . . .ql})
0 (x ∈ [a, b] \ {q1, q2, . . . .ql})

と定義する. 各 l ≥ 1 について fl はリーマン積分可能で∫ b

a

fl(x)dx = 0

である. 実際, 任意の ε > 0 とする. qk, 1 ≤ k ≤ l を含む小区間において

qk ∈
[
qk −

ε

2l
, qk +

ε

2l

]
となる分割を∆0 とすると

0 ≤ S(fl; ∆0) =
l∑

k=1

f(qk)
ε

l
= ε

となる. したがって

0 ≤ inf
∆∈D

S(fl; ∆) ≤ S(fl; ∆0) = ε

なので ε > 0 の任意性により

inf
∆∈D

S(fl; ∆) = 0

を得る. 一方 s(fl; ∆) = 0 なので ∫ b

a

fl(x)dx = 0.

� �
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� �
例 2 (リーマン積分可能でない関数). 次に x ∈ I に対する各点収束の意味で

lim
l→∞

fl(x) = χS(x)

であることを示そう. ここで, 特性関数

χS(x) =

{
1 x ∈ S

0 x ∈ [a, b] \ S

である. 任意の ε > 0 とする. x ∈ [a, b] が有理数, すなわち x ∈ S の場合はN ≥ 1

が存在して x = qN となるので l ≥ N ならば

|fl(x)− χS(x)| = |fl(qN)− χS(qN)| = |1− 1| = 0 < ε.

次に x ̸∈ S の場合は任意の l ≥ 1 に対して x ̸= ql なので

|fl(x)− χS(x)| = |0− 0| < ε.

以上より各点収束で

lim
l→∞

fl(x) = χS(x).

次に χS はリーマン積分可能でないことを示そう. 有理数の稠密性により, どんな
分割∆ においても分割された区間 [xk−1, xk] の中に有理数 q ∈ S が存在する. した
がって χS の過剰和 S(χS; ∆) と不足和 s(χS; ∆) は

S(χS; ∆) =
l∑

k=1

(
sup

x∈[xk−1,xk]

χS(x)

)
(xk − xi−k) =

l∑
k=1

1 · (xk − xk−1) = b− a.

一方

s(χS; ∆) =
l∑

k=1

(
inf

x∈[xk−1,xk]
χS(x)

)
(xk − xk−1) =

l∑
k=1

0 · (xk − xk−1) = 0.

よって χS はリーマン積分可能でない.� �
ルベーグ積分の考え方
上の例で考えた χS は有理数に対して 1 であり, 無理数に対して 0 であるが有理数と
無理数は実数において稠密であるから, χS はかなり頻繁に 0 と 1 の値を行き来する. χS

は不連続の程度が大きいのである. この様な関数はリーマン積分とは相性が良くない.

そのことは過剰和, 不足和の定義の仕方からも明らかである. リーマン積分では横軸方
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向に分割を考えたのに対して, ルベーグ積分では縦軸方向に分割する. すなわち x-y 平
面にグラフが描かれる場合には y 軸を分割するのである. そのことを説明するために,

ここでは簡単のために f ≥ 0 なる関数に限ることにする. まず y軸を

0 <
1

2k
<

2

2k
< · · · < (k2k − 1) + 1

2k
= k, y ≥ k

と分割する. この分割の意味は k ≥ 1 を固定したら高さ k までの範囲を 1/2k の幅で k2k

個に分割し, さらに k 以上の範囲と分けている. 次に f を近似する関数列を導入する.

j = 0, 1, 2, . . . , k2k − 1, k ≥ 1 として

Ak,j =

{
x ∈ R;

j

2k
≤ f(x) <

j + 1

2k

}
, Ak,k2k = {x ∈ R; f(x) ≥ k}

とおく.

fk =
k2k∑
j=1

j

2k
χAk,j

と定義すると 0 ≤ f(x) < ∞ なる x に対しては k ≥ 1 が存在し

0 ≤ f(x)− fk(x) <
1

2k
.

f(x) = ∞ なる x に対してはすべての k ≥ 1 に対して fk(x) = k となるから任意の x に
対して fk(x) ↗ f(x). すなわち {fk} は f に各点収束する. fk の積分はグラフに伴う図
形の面積として

Ik =
k2k∑
j=1

j

2k
|Ak,j|

となる. ルベーグ積分論では f の積分を fk の積分の極限∫
R
f(x)dx = lim

k→∞
Ik

として f のルベーグ積分を定義する. しかしこれを正当化する上での問題点がある. そ
れは |Ak,j| をAk,j の長さとしたがAk,j は長さを定義できる集合かわからないというこ
とである. 集合の長さ, 面積と体積のことを測度という. 測度論*1において測度を定義す
る対象となる集合に対して加算無限和で閉じる性質（完全加法性）を要請し, その様な
集合を可測集合と呼び測度を考える集合として可測集合を扱う. そしてAk,j の形の集合
が可測となる関数を可測関数といい, 可測関数に対してルベーグ積分を考える. ルベー
グ積分では完全加法性を理論の中に取り込むことで積分と極限操作との相性が良いので
ある.

*1測度を取り扱う分野を測度論という.
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第1章 完全加法族

以下の議論では通常, 全体集合X として空集合でないものを仮定するがそのことを明
文化しないことがある.

有限加法族� �
X ̸= ∅ を集合とする. X の部分集合族F がX における有限加法族であるとは次の
(1) ∼ (3) をみたすことをいう.

(1) X ∈ F .

(2) A ∈ F ならばAc ∈ F .

(3) A,B ∈ F ならばA ∪B ∈ F .

有限加法族は集合体とかアルジブラと呼ぶこともある.� �� �
問題 1. X における有限加法族F とする. ∅ ∈ F であることを示せ.� �� �
問題 2. X における有限加法族F とする. A,B ∈ F ならばA∩B ∈ F であること
を示せ.� �� �
注意 1. 定義の (3) をこの条件に代えることができる.� �� �
問題 3. X = {a, b} とする. F = {X,∅, {a}} は有限加法族でないことを示せ.� �
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完全加法族� �
X を集合とする. X の部分集合族 F が X における完全加法族であるとは次の
(1) ∼ (3) をみたすことをいう.

(1) X ∈ F .

(2) A ∈ F ならばAc ∈ F .

(3) {Ak} ⊂ F ならば⋃∞
k=1 Ak ∈ F .

完全加法族は σ 集合体とか σ アルジブラと呼ぶこともある. 測度論に関連する用語
に σ を用いることがあるのはそのためである.� �
可測空間� �
X を集合とする. F がX における完全加法族であるときA ∈ F を可測集合という.

また完全加法族F に対して (X,F) を可測空間という.� �� �
問題 4. X における完全加法族F とする. {Ak} ⊂ F ならば⋂∞

k=1 Ak ∈ F である
ことを示せ.� �� �
注意 2. 完全加法族は有限加法族である. 実際にF を完全加法族とすればA,B ∈ F
のとき {Ak} ⊂ F をA1 = A,A2 = B,Ak = ∅ (k ≥ 3) とすれば

A ∪B =
∞⋃
k=1

Ak ∈ F .

� �� �
問題 5. X に対して F = {∅, X} とする. このとき (X,F) は可測空間であること
を示せ.� �� �
問題 6. 集合X に対して部分集合A ⊂ X とする. F = {∅, A,Ac, X} とする. この
とき (X,F) は可測空間であることを示せ.� �� �
定理 1. X を集合とする. 次の (1) ∼ (3)が成り立つ.

(1) 2X は完全加法族であるa.

(2) Fλ (λ ∈ Λ) を完全加法族とする. このとき⋂λ∈Λ Fλ は完全加法族である.

(3) 任意の集合族A に対してA を含む最小の完全加法族 F が存在する. この F
をA の生成する完全加法族という.

aX の部分集合全体からなる集合族を 2X とかく.� �



13

証明. (1) は明らかである.

(2) 完全加法族としての条件 (1), (2) をみたすことは明らかである.

{Ak} ⊂
⋂
λ∈Λ

Fλ

を仮定する. このとき, 任意の λ ∈ Λ に対して {Ak} ⊂ Fλ なので
∞⋃
k=1

Ak ∈ Fλ

が成り立つ. したがって
∞⋃
k=1

Ak ∈
⋂
λ∈Λ

Fλ.

(3) (1) より 2X はA を含む完全加法族である. すなわちA を含む完全加法族は存在す
る. 次にA を含む完全加法族全体を {Fγ}γ∈Γ とすれば (2) により

F =
⋂
γ∈Γ

Fγ

はAを含む最小の完全加法族となる.

記法 σ[A]� �
集合族Aを含む最小の完全加法族,すなわちAの生成する完全加法族をσ[A]とかく.� �
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第2章 ボレル集合族と基本図形

ボレル集合族� �
Rn の開集合の全体On の生成する完全加法族をボレル集合族といい Bn と表す. す
なわち

Bn = σ[On]

と定義する. Bn に属する集合をボレル集合という.� �� �
注意 3. 開集合の補集合は閉集合なので, 閉集合の全体 Cn の生成する完全加法族

Bn = σ[Cn]

と定義しても同じである.� �
n次元右開区間� �
n 個の右開区間の直積

I =
n⊗

k=1

[ak, bk)

を n 次元右開区間という. n 次元右開区間全体の集合を

In =

{
I ⊂ Rn; I =

n⊗
k=1

[ak, bk) (ak, bk ∈ R)

}

とかく. ただしR はR = [−∞,∞) として右開区間とするa.

a非有界な区間も [−∞, a) = (−∞, a)等とかいて右開区間として扱う.� �
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n次元基本図形� �
有限個の n次元右開区間の和集合を n次元基本図形という. n 次元基本図形全体を

En =

{
A ⊂ Rn; A =

m⋃
j=1

Ij (Ij ∈ In)

}

とかくa.

a便宜上, 空集合も右開区間として含むものとする.� �� �
定理 2. 次の (1) ∼ (3) が成り立つ.

(1) 基本図形は互いに素な有限個の右開区間の和集合として表される.

(2) En は有限加法族である.

(3) Bn = σ[In].

(4) Bn = σ[En].� �
証明. 簡単のために n = 1 の場合のみ証明する. (1) は明らかである.

(2) R ∈ E1 である. A = [a, b) のときAc = (−∞, a) ∪ [b,∞) ∈ E1.

A =
m⋃
j=1

Ij, B =
l⋃

k=1

Jk ∈ E1

のとき
A ∩ B =

⋃
j,k

Ij ∩ Jk ∈ E1

である. 以上により
A =

m⋃
j=1

Ij ∈ E1 =⇒ Ac =
m⋂
j=1

Ij
c ∈ E1.

したがって有限加法族.

(3), (4) 任意の [a, b) ∈ I1 は

[a, b) =
∞⋂
k=1

(
a− 1

k
, b

)
とかける*1. また (a − 1/k, b) は開集合なので (a − 1/k, b) ∈ B1 である. B1 は完全加法
族なので [a, b) ∈ B1. したがって I1 ⊂ B1. またA ∈ E1 とすればA =

⋃m
j=1 Ij, Ij ∈ I1

*1x ∈ [a, b)とすると任意の k ≥ 1に対して a−1/k < a ≤ x < b.したがって x ∈
⋂

k≥1(a−1/k, b). 逆に
x ∈

⋂
k≥1(a− 1/k, b)とすると任意の k ≥ 1に対して a− 1/k < x < b. したがって x は {a− 1/k; k ≥ 1}

の上界なので a = supk≥1(a− 1/k) ≤ x < bとなり x ∈ [a, b).
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とかけるのでA ∈ B1. したがって E1 ⊂ B1. 以上により

σ[I1] ⊂ σ[E1] ⊂ B1.

次に逆の向きの包含関係を示そう. そのために任意のG ∈ O1 とする. 有理数全体の集
合は可算集合なので

Q = {q1, q2, q3 . . .}

とおき, 正の有理数全体の集合を

Q+ = {r1, r2, r3, . . .}

とおく. U(qj, rl) = (qj − rl, qj + rl) なる形の集合でG に含まれるもの全体を

V = {V1, V2, V3, . . .}

とおくと
G =

∞⋃
m=1

Vm

が成り立つ. このことを示そう. x ∈ G とすれば G は開集合なので δ > 0 が存在し
U(x, δ) ⊂ G となる. また有理数の稠密性により qj ∈ U(x, δ/3) なる qj ∈ Q が存在する.

同様に δ/3 < rl < 2δ/3 なる rl ∈ Q+ が存在する. このとき

U(qj, rl) ⊂ U(x, δ/3 + rl) ⊂ U(x, δ) ⊂ G

なので*2 U(qj, rl) ∈ V である. すなわちm ≥ 1 が存在し Vm = U(qj, rl) である. さらに
|x − qj| < δ/3 < rl だから x ∈ U(qj, rl) = Vm. したがってG ⊂ Vm ⊂

⋃∞
m=1 Vm である.

逆の包含関係は明らか. 任意の開区間は

(a, b) =
∞⋃
k=1

[
a+

1

k
, b

)
とかける*3. [a+1/k, b) ∈ I1 ⊂ σ[I1] なので (a, b) ∈ σ[I1]. またG =

⋃∞
m=1 Vm であり各

Vm は
Vm = (qj − rl, qj + rl) =

∞⋃
k=1

[
qj − rl +

1

k
, qj + rl

)
∈ σ[I1].

したがってG ∈ σ[I1]. 以上により

B1 ⊂ σ[I1] ⊂ σ[E1].

*2x− δ/3 < qj < x+ δ/3なので qj + rl < x+ δ/3 + rl である. また qj − rl > x− δ/3− rl. したがっ
て U(qj , rl) = (qj − rl, qj + rl) ⊂ (x− δ/3− rl, x+ δ/3 + rl) = U(x, δ/3 + rl) ⊂ U(x, δ) となる.

*3x ∈ (a, b)とすると x−a > 1/k > 0なる kが存在し a+1/k < x < bとなるので x ∈
⋃∞

k=1[a+1/k, b).
逆に x ∈

⋃∞
k=1[a+ 1/k, b) とすれば k ≥ 1が存在し a < a+ 1/k ≤ x < b. すなわち x ∈ (a, b).
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� �
注意 4. En は完全加法族ではない. 実際に n = 1 の場合にこのことを示してみよ
う. E1 が完全加法族であるとすれば {Ak} ⊂ E1 ならば⋂∞

k=1 Ak ∈ E1 となる. しか
しAk = [0, 1 + 1/k) (k ≥ 1) と定めれば⋂∞

k=1 Ak =
⋂∞

k=1[0, 1 + 1/k) = [0, 1] となる
ので矛盾であるa.

ax ∈ [0, 1]とすると任意の k ≥ 1 に対して 0 ≤ x ≤ 1 < 1+ 1/k. すなわち x ∈ [0, 1+ 1/k) なので
x ∈

⋂
k≥1[0, 1+ 1/k). 逆に x ∈

⋂
k≥1[0, 1+ 1/k) とすれば任意の k ≥ 1に対して x ∈ [0, 1+ 1/k). す

なわち 0 ≤ x < 1 + 1/k. x は {1 + 1/k; k ≥ 1} の下界なので 0 ≤ x ≤ infk≥1(1 + 1/k) = 1 となり
x ∈ [0, 1].� �
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第3章 測度

測度� �
(X,F) を可測空間とする. µ : F → [0,∞] が測度であるとは次の (1), (2) をみたす
ことをいう.

(1) µ(∅) = 0. 0 ≤ µ(A) ≤ ∞ (A ∈ F).

(2) （完全加法性）{Ak} ⊂ F , Aj ∩ Ak = ∅ (j ̸= k) をみたすとき

µ

(
∞⋃
k=1

Ak

)
=

∞∑
k=1

µ(Ak).

測度が定義されるとき (X,F , µ) を測度空間という.� �� �
定理 3. 測度空間 (X,F , µ) とする. 次の (1) ∼ (3) が成り立つ.

(1) （有限加法性）A,B ∈ F , A ∩B = ∅ のとき µ(A ∪ B) = µ(A) + µ(B).

(2) （単調性）A ⊂ B, A,B ∈ F ならば µ(A) ≤ µ(B).

(3) （劣加法性）{Ak} ⊂ F に対して

µ

(
∞⋃
k=1

Ak

)
≤

∞∑
k=1

µ(Ak).

� �
証明. (1) A1 = A,A2 = B, Ak = ∅ (k ≥ 3)とするとµ(∅) = 0なのでµ(Ak) = 0 (k ≥ 3)

だから
µ(A ∪ B) = µ

(
∞⋃
k=1

Ak

)
=

∞∑
k=1

µ(Ak) = µ(A) + µ(B).

(2) B = (B \ A) ∪ A なので有限加法性により

µ(B) = µ(B \ A) + µ(A) ≥ µ(A).

(3)

B1 = A1, Bk = Ak \
k−1⋃
j=1

Aj
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とおくと
{Bk} ⊂ F ,

∞⋃
k=1

Bk =
∞⋃
k=1

Ak

でBj ∩ Bk = ∅ (j ̸= k) である. したがって

µ

(
∞⋃
k=1

Ak

)
= µ

(
∞⋃
k=1

Bk

)
=

∞∑
k=1

µ(Bk) ≤
∞∑
k=1

µ(Ak).

� �
問題 7. (3) の証明における⋃∞

k=1 Bk =
⋃∞

k=1 Ak を証明せよa.

aヒント：両辺の集合の包含関係を確かめればよい. とくに⋃∞
k=1 Ak ⊂

⋃∞
k=1 Bk の方は自明では

ない. Ak0 = Bk0 ∪
⋃k0−1

j=1 Aj とかけることに注意.� �
測度の性質
集合の極限� �
集合列 {Ak} に対して上極限, 下極限をそれぞれ

lim sup
k→∞

Ak =
⋂
k≥1

(⋃
j≥k

Aj

)
,

lim inf
k→∞

Ak =
⋃
k≥1

(⋂
j≥k

Aj

)

と定める. 集合の極限を上極限, 下極限が一致するときにその共通の値で定義する.

すなわち

lim
k→∞

Ak = lim sup
k→∞

Ak = lim inf
k→∞

Ak.

A1 ⊂ A2 ⊂ · · · なる集合列を単調増加列, A1 ⊃ A2 ⊃ · · · なる集合列を単調減少列
という. 単調増加列であることをAk ↗, 単調減少列であることをAk ↘ で表す.� �� �
定理 4. {Ak} が単調減少列ならば lim

k→∞
Ak =

∞⋂
k=1

Ak.

� �
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証明. 単調減少列, すなわちA1 ⊃ A2 ⊃ · · · であるとする. このとき

lim sup
k→∞

Ak =
⋂
k≥1

(⋃
j≥k

Aj

)
=
⋂
k≥1

Ak.

またBk =
⋂

j≥k Aj (k ≥ 1) は単調減少列である. したがってB1 =
⋃

k≥1 Bk.

lim inf
k→∞

Ak =
⋃
k≥1

(⋂
j≥k

Aj

)
=
⋃
k≥1

Bk

= B1

=
⋂
j≥1

Aj.

� �
問題 8. {Ak} が単調増加列ならば lim

k→∞
Ak =

∞⋃
k=1

Ak であることを証明せよ.

� �� �
定理 5. 測度空間 (X,F , µ) とする. 可測集合列 {Ak} ⊂ F とする. このとき以下の
(1) ∼ (5)が成り立つ.

(1) Ak ↗ ならば µ
(
lim
k→∞

Ak

)
= lim

k→∞
µ(Ak).

(2) Ak ↘ , µ(A1) < ∞ ならば µ
(
lim
k→∞

Ak

)
= lim

k→∞
µ(Ak).

(3) µ
(
lim inf
k→∞

Ak

)
≤ lim inf

k→∞
µ(Ak).

(4) µ

(
∞⋃
k=1

Ak

)
< ∞ ならば µ

(
lim sup
k→∞

Ak

)
≥ lim sup

k→∞
µ(Ak).

(5) µ

(
∞⋃
k=1

Ak

)
< ∞, lim

k→∞
Ak = A ならば µ

(
lim
k→∞

Ak

)
= lim

k→∞
µ(Ak).

� �
証明. (1) B1 = A1, Bk = Ak \ Ak−1 (k = 2, 3, . . .) とおけば

{Bk} ⊂ F , Ak =
k⋃

j=1

Bj
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であり
∞⋃
k=1

Bk =
∞⋃
k=1

Ak = lim
k→∞

Ak.

また {Bk} は互いに素であるから

µ
(
lim
k→∞

Ak

)
= µ

(
∞⋃
k=1

Bk

)

=
∞∑
k=1

µ(Bk)

= lim
k→∞

k∑
j=1

µ(Bj)

= lim
k→∞

µ

(
k⋃

j=1

Bj

)
= lim

k→∞
µ(Ak).

(2) Bk = A1 \ Ak = A1 ∩ Ak
c (k = 1, 2, . . .) とおく. Ak ↘ なので Ak

c ↗ であるから
Bk ↗ . また {Bk} ⊂ F である.

lim
k→∞

Ak =
∞⋂
k=1

Ak, lim
k→∞

Bk =
∞⋃
k=1

Bk = A1 ∩
∞⋃
k=1

Ak
c = A1 \

(
∞⋂
k=1

Ak

)c

.

以上により
A1 = lim

k→∞
Ak ∪ lim

k→∞
Bk

であり limk→∞ Ak と limk→∞ Bk は互いに素. これより

µ(A1) = µ
(
lim
k→∞

Ak

)
+ µ

(
lim
k→∞

Bk

)
= µ

(
lim
k→∞

Ak

)
+ lim

k→∞
µ (Bk)

= µ
(
lim
k→∞

Ak

)
+ lim

k→∞
(µ(A1)− µ (Ak))

= µ
(
lim
k→∞

Ak

)
+ µ(A1)− lim

k→∞
µ (Ak) .

µ(A1) < ∞ なので, 以上により求める等式を得る.

(3) Bk =
⋃∞

j=k Aj とおくと {Bk} ⊂ F . またBk ↗ で

lim inf
k→∞

Ak =
∞⋃
k=1

∞⋂
j=k

Ak =
∞⋃
k=1

Bk = lim
k→∞

Bk
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なので

µ
(
lim inf
k→∞

Ak

)
= µ

(
lim
k→∞

Bk

)
= lim

k→∞
µ

(
∞⋂
j=k

Aj

)
≤ lim

k→∞
inf
j≥k

µ (Aj)

= lim inf
k→∞

µ(Ak).

ここで k ≥ 1 を固定して
∞⋂
j=k

Aj ⊂ Al (∀l ≥ k)

なので
µ

(
∞⋂
j=k

Aj

)
≤ µ(Al) (∀l ≥ k).

右辺の下限をとると
µ

(
∞⋂
j=k

Aj

)
≤ inf

j≥k
µ(Aj)

となることを用いた.

(4) Bk =
⋃∞

j=k Aj とおけば {Bk} ⊂ F , Bk ↘ である.

lim sup
k→∞

Ak = lim
k→∞

Bk, µ(B1) = µ

(
∞⋃
j=1

Aj

)
< ∞

なので

µ

(
lim sup
k→∞

Ak

)
= µ

(
lim
k→∞

Bk

)
= lim

k→∞
µ(Bk)

= lim
k→∞

µ

(
∞⋃
j=k

Aj

)
≥ lim

k→∞
sup
j≥k

µ(Aj)

= lim sup
k→∞

µ(Ak).

ここで k ≥ 1 を固定して
Al ⊂

∞⋃
j=k

Aj (∀l ≥ k)
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なので
µ(Al) ≤ µ

(
∞⋃
j=k

Aj

)
(∀l ≥ k).

右辺の上限をとると
sup
j≥k

µ(Aj) ≤ µ

(
∞⋃
j=k

Aj

)
となることを用いた.

(5)これは (3), (4) より直ちに得られる.

有限測度� �
測度空間 (X,F , µ) とする. µ : F → [0,∞] が有限測度であるとは µ(X) < ∞ をみ
たすことをいう.� �
σ有限測度� �
測度空間 (X,F , µ) とする. µ が σ 有限測度であるとは µ : F → [0,∞] に対して
{Xk} ⊂ F で

Xk ↗ X, µ(Xk) < ∞

をみたすものが存在することをいう.� �
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零集合� �
測度空間 (X,F , µ) とする. µ(A) = 0 をみたすA ∈ F を零集合という.� �
完備測度� �
測度空間 (X,F , µ) とする. µ が完備測度であるとは, 任意のA0 ⊂ X に対して

A0 ⊂ A, A ∈ F , µ(A) = 0 =⇒ A0 ∈ F

が成り立つことをいう. このとき F を µ-完備完全加法族という. (X,F , µ) を完備
測度空間という.� �� �
例 3. X = {0, 1} とする. F = {X,∅} は完全加法族である. (X,F) において
µ : F → [0,∞] を

µ(∅) = 0, µ(X) = 0

と定義する. このとき (X,F , µ) は測度空間となるが完備測度空間でないことを示
そう. 測度空間であることは明らかである. 完備性については µ(X) = 0 であるが
{0} ⊂ X は {0} ̸∈ F であるから完備であることの条件をみたさない. 以上により完
備測度空間でない.� �� �
注意 5. 上の例により定義の仕方によって完備測度にならないことがあるというこ
とがわかった.� �� �
定理 6. 測度空間 (X,F , µ) とする. 以下の (1) ∼ (3) は同値である.

(1) µ は完備測度である.

(2) B1 ⊂ A ⊂ B2, B1, B2 ∈ F , µ(B2 \B1) = 0 =⇒ A ∈ F .

(3) A ∪ B \ (A ∩ B) ⊂ N, B,N ∈ F , µ(N) = 0 =⇒ A ∈ F .� �
証明. (1) ⇒ (2)

A \ B1 ⊂ B2 \ B1, B2 \ B1 ∈ F , µ(B2 \ B1) = 0 なので (1) より A \ B1 ∈ F . A =

(A \B1) ∪ B1 ∈ F .
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(2) ⇒ (3)

B ⊂ A∪N とA ⊂ B∪N を示そう. 対称性からB ⊂ A∪N を示せば十分である. x ∈ B

とすると
x ∈ A ∩ B または x ∈ B \ A

である. A ∩ B ⊂ A とB \ A ⊂ (A ∪ B) \ (A ∩B) ⊂ N であることにより

x ∈ A または x ∈ N.

以上により包含関係
B \N ⊂ A ⊂ B ∪N

を得る.

µ((B ∪N) \ (B \N)) = µ((B ∪N) ∩Bc ∪N)

= µ(N) = 0.

したがって (2)よりA ∈ F .

(3) ⇒ (1)

A ⊂ N, N ∈ F , µ(N) = 0 とすれば∅ ⊂ A∪N \ (A∩N) = N \A ⊂ N. したがって (3)

よりA ∈ F .� �
定理 7. 測度空間 (X,F , µ) とする.

F =
{
A ⊂ X; ∃B1, B2 ∈ F : B1 ⊂ A ⊂ B2, µ(B2 \B1) = 0

}
とおく. このときF はF ⊂ F をみたす完全加法族である. さらにA ∈ F に対して
定義におけるB1, B2 によって

µ(A) = µ(B1) (= µ(B2))

と定義すると µ はF 上の完備測度である. F をF の µ-完備化といい (X,F , µ
) を

(X,F , µ) の完備化という.� �
証明. µ(A)の一意性
まずA ∈ F に対してF の定義におけるB1, B2 の選び方に依らずに µ(A) の値が一意に
定まることを示そう. Bk (k = 1, 2), Bk

′ (k = 1, 2) は

B1 ⊂ A ⊂ B2, µ(B2 \B1) = 0,

B1
′ ⊂ A ⊂ B2

′, µ(B2
′ \B1

′) = 0

をみたすとする. このとき

B1
′ \B1 ⊂ (B1

′ \B1) ∪ (B1 \B1
′) ⊂ (B2 \B1) ∪ (B2

′ \B1
′)
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であるから

µ(B1
′) = µ(B1).

F が完全加法族であること
(1) X ∈ F であることはB1 = B2 = X として成り立つ.

(2) A ∈ F とするとB1, B2 ∈ F が存在してB1 ⊂ A ⊂ B2, µ(B2 \ B1) = 0. このとき
B2

c ⊂ Ac ⊂ B1
c であり

µ(B1
c \B2

c) = µ(B2 \B1) = 0.

すなわちAc ∈ F .

(3) {Ak} ⊂ F とする. このとき各 k に対してBk,1, Bk,2 ∈ F が存在して

Bk,1 ⊂ Ak ⊂ Bk,2, µ(Bk,2 \Bk,1) = 0.

このとき
∞⋃
k=1

Bk,1 ⊂
∞⋃
k=1

Ak ⊂
∞⋃
k=1

Bk,2

である. さらに

µ

(
∞⋃
k=1

Bk,2 \
∞⋃
k=1

Bk,1

)
≤

∞∑
k=1

µ(Bk,2 \Bk,1) =
∞∑
k=1

(µ(Bk,2)− µ(Bk,1)) = 0.

したがって ⋃∞
k=1 Ak ∈ F . また A ∈ F に対しては B1 = B2 = A とすればよいので

F ⊂ F である. こうしてF はF ⊂ F なる完全加法族である.

µが測度であること
まずµ(∅) = 0 と 0 ≤ µ(A) ≤ ∞ は明らかである. 次に {Ak} ⊂ F , Aj ∩Ak = ∅ (j ̸= k)

とする. このとき上の議論と同じようにして各 k ≥ 1 に対して Bk,1, Bk,2 ∈ F が存在
して

Bk,1 ⊂ Ak ⊂ Bk,2, µ(Bk,2 \Bk,1) = 0

となっている. Bj,1 ∩ Bk,1 = ∅ (j ̸= k) である. したがって

µ

(
∞⋃
k=1

Ak

)
= µ

(
∞⋃
k=1

Bk,1

)
=

∞∑
k=1

µ(Bk,1) =
∞∑
k=1

µ(Ak).

µのF における完備性
A ⊂ N, N ∈ F , µ(N) = 0 とする. このときN ∈ F なので∅ ⊂ N ⊂ B なるB ∈ F が
存在し

µ(B \∅) = 0

となる. このとき∅ ⊂ A ⊂ B で µ(B \∅) = 0 なのでA ∈ F .
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第5章 外測度・測度の構成

先の議論で完全加法族上の測度を導入したがここでは有限加法族上の測度を導入する.

有限加法族上の測度� �
集合X とする. X における有限加法族F0 とする. µ0 : F0 → [0,∞] がF0 上の測度
であるとは次の (1), (2) をみたすことをいう.

(1) µ0(∅) = 0. 0 ≤ µ0(A) ≤ ∞ (A ∈ F0).

(2) （完全加法性）{Ak} ⊂ F0, Aj ∩ Ak = ∅ (j ̸= k) をみたし⋃∞
k=1 Ak ∈ F0 のと

きに
µ0

(
∞⋃
k=1

Ak

)
=

∞∑
k=1

µ0(Ak).

� �� �
注意 6. (2) において⋃∞

k=1 Ak ∈ F0 という仮定は重要である. F0 は有限加法族なの
で任意合併が閉じるとは限らないからである.� �� �
定理 8. 集合X とする. 有限加法族F0, 測度µ0 : F0 → [0,∞] とする. 次の (1) ∼ (3)

が成り立つ.

(1) （有限加法性）A,B ∈ F0, A ∩B = ∅ のとき µ0(A ∪B) = µ0(A) + µ0(B).

(2) （単調性）A ⊂ B, A,B ∈ F0 ならば µ0(A) ≤ µ0(B).

(3) （劣加法性）{Ak} ⊂ F0 に対して
⋃∞

k=1 Ak ∈ F0 のとき

µ0

(
∞⋃
k=1

A

)
≤

∞∑
k=1

µ0(Ak).

� �
証明. 完全加法族における測度の場合と同様である.
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カラテオドリの外測度� �
集合X とする. µ∗ : 2X → [0,∞] が次の (1) ∼ (3) をみたすときカラテオドリの外
測度であるという. 単に外測度ともいう.

(1) µ∗(∅) = 0. 0 ≤ µ∗(A) ≤ ∞ (A ∈ 2X).

(2) A ⊂ B =⇒ µ∗(A) ≤ µ∗(B).

(3) 任意の {Ak} ⊂ 2X に対して

µ∗

(
∞⋃
k=1

Ak

)
≤

∞∑
k=1

µ∗(Ak).

有限個の場合も同じ不等式が成り立つ.� �� �
定理 9. 集合X とする. X における有限加法族F0 とする. µ0 をF0 上の測度とす
る. µ∗ : 2X → [0,∞] を以下のように定める.

µ∗(A) = inf

{
∞∑
k=1

µ0(Ak); A ⊂
∞⋃
k=1

Ak, {Ak} ⊂ F0

}
(A ∈ 2X).

このとき µ∗ は 2X 上の外測度であるa.

aA ∈ 2X に対して F0 = {∅, A,Ac, X}は有限加法族であり {Ak}を A1 = A,Ak = ∅ (k ≥ 2)と
定義すれば A ⊂

⋃∞
k=1 Ak となる. したがって任意の A ∈ 2X に対して上の様な {Ak} ⊂ F0が存在す

る. また µ0(Ak) が定義できればいいから
⋃∞

k=1 Ak ∈ F0 であることは要請されていない.� �
証明. 外測度の定義における (1) は明らかである. A,B ∈ 2X でなるものとA ⊂ B とす
る. B ⊂

⋃∞
k=1 Bk なる {Bk} ⊂ F0 はA ⊂

⋃∞
k=1 Bk もみたす. すなわち{

{Bk} ⊂ F0; B ⊂
∞⋃
k=1

Bk

}
⊂

{
{Ak} ⊂ F0; A ⊂

∞⋃
k=1

Ak

}
であるから下限をとると

µ∗(A) = inf

{
∞∑
k=1

µ0(Ak); A ⊂
∞⋃
k=1

Ak, {Ak} ⊂ F0

}

≤ inf

{
∞∑
k=1

µ0(Bk); B ⊂
∞⋃
k=1

Bk, {Bk} ⊂ F0

}
= µ∗(B).

以上により定義における (2) が成り立つ. 次に定義における (3) を示そう. {Ak} ⊂ 2X

とする. 任意の ε > 0 に対して µ∗ の定義から各Ak に対して {Ak,j} ⊂ F0 が存在して

Ak ⊂
∞⋃
j=1

Ak,j,

∞∑
j=1

µ0 (Ak,j) ≤ µ∗(Ak) +
ε

2k
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となる.
∞⋃
k=1

Ak ⊂
⋃

k,j≥1

Ak,j

なので (2) の性質より

µ∗

(
∞⋃
k=1

Ak

)
≤ µ0

( ⋃
k,j≥1

Ak,j

)
≤
∑
k,j≥1

µ0 (Ak,j)

=
∞∑
k=1

∞∑
j=1

µ0(Ak,j)

≤
∞∑
k=1

µ∗(Ak) + ε.

ε > 0 の任意性により (3) が成り立つ.

µ∗-可測集合（カラテオドリの条件）� �
µ∗ : 2X → [0,∞] を外測度とするとき

F∗ =

{
A ∈ 2X ; µ∗(Ω) ≥ µ∗(Ω ∩ A) + µ∗(Ω ∩ Ac) (∀Ω ∈ 2X)

}

と定義する. A ∈ F∗ を µ∗-可測集合という. F∗ は µ∗-可測集合全体の集合である.

F∗ の定義における可測集合に対する条件をカラテオドリの条件という.� �� �
注意 7. 任意のA,Ω ∈ 2X に対して

µ∗(Ω) = µ∗ ((Ω ∩ A) ∪ (Ω ∩ Ac)) ≤ µ∗ (Ω ∩ A) + µ∗ (Ω ∩ Ac)

なのでA ∈ F∗ に対しては

µ∗(Ω) = µ∗(Ω ∩ A) + µ∗(Ω ∩ Ac)

が成り立つ. この等式を定義に用いる文献もある.� �
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� �
注意 8 (カラテオドリの条件の意味).

Ω = A1 ∪ A2, A1 ∩ A2 = ∅, A1, A2 ∈ F∗

であるとする. このときA1 はカラテオドリの条件を満たすのだから

µ∗(A1 ∪ A2) = µ∗((A1 ∪ A2) ∩ A1) + µ∗((A1 ∪ A2) \ A1)

= µ∗(A1) + µ∗(A2).

実は後で証明する様に互いに素な {Ak} ⊂ F∗ に対しても

µ∗

(
∞⋃
k=1

Ak

)
=

∞∑
k=1

µ∗(Ak)

であることを示せる. カラテオドリの条件は外測度の完全加法性を保証するための
条件であるといえる.� �� �
定理 10. F∗ は完全加法族である. µ∗|F∗ はF∗ 上の完備測度である. (X,F∗, µ∗|F∗)

を外測度 µ∗ の決定する完備測度空間という.� �
証明. F∗が有限加法族であること
(1) X ∈ F∗ である. 実際に

µ∗((Ω ∩X) ∪ (Ω ∩Xc)) ≤ µ∗(Ω ∩X) + µ∗(∅) = µ∗(Ω) (Ω ∈ 2X)

なのでX ∈ F∗.

(2) A ∈ F∗ のときAc ∈ F∗ であることはカラテオドリの条件の対称性により明らかで
ある.

(3) A,B ∈ F∗ とする. このときΩ ∈ 2X に対してA ∈ F∗ であること, Ω∩A ∈ 2X に対
してB ∈ F∗ であることを続けて用いると

µ∗(Ω) ≥ µ∗(Ω ∩ A) + µ∗(Ω ∩ Ac)

≥ µ∗((Ω ∩ A) ∩B) + µ∗((Ω ∩ A) ∩Bc) + µ∗(Ω ∩ Ac)

≥ µ∗(Ω ∩ (A ∩ B)) + µ∗((Ω ∩ A ∩ Bc) ∪ (Ω ∩ Ac))

= µ∗(Ω ∩ (A ∩ B)) + µ∗(Ω ∩ (A ∩ B)c).

ここで

(Ω ∩ A ∩ Bc) ∪ (Ω ∩ Ac) = Ω ∩ ((A ∩ Bc) ∪ Ac)

= Ω ∩ ((A ∪ Ac) ∩ (Bc ∪ Ac))

= Ω ∩ (Ac ∪ Bc)

= Ω ∩ (A ∩ B)c
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を用いた. したがってA ∩ B ∈ F∗. 有限加法族である.

F∗が完全加法族であること
まず {Ak} ⊂ F∗ が互いに素であれば任意のm ≥ 1 に対して

µ∗(Ω) ≥
m∑
k=1

µ∗(Ω ∩ Ak) + µ∗

(
Ω ∩

(
m⋃
k=1

Ak

)c)

が成立することを示そう. 数学的帰納法により示していく. A1 ∈ F∗ なのでm = 1 のと
き成り立つ. m で成り立つとしてm+ 1 のときAm+1 ∈ F∗ なので

µ∗(Ω)

≥
m∑
k=1

µ∗(Ω ∩ Ak) + µ∗

((
Ω ∩

(
m⋃
k=1

Ak

)c)
∩ Am+1

)
+ µ∗

((
Ω ∩

(
m⋃
k=1

Ak

)c)
∩ Am+1

c

)

=
m∑
k=1

µ∗(Ω ∩ Ak) + µ∗

(
Ω ∩

(
m⋃
k=1

Ak ∪ Am+1
c

)c)
+ µ∗

(
Ω ∩

(
m⋃
k=1

Ak ∪ Am+1

)c)

=
m∑
k=1

µ∗(Ω ∩ Ak) + µ∗ (Ω ∩ (Am+1
c)c) + µ∗

(
Ω ∩

(
m+1⋃
k=1

Ak

)c)

=
m+1∑
k=1

µ∗(Ω ∩ Ak) + µ∗

(
Ω ∩

(
m+1⋃
k=1

Ak

)c)
.

ここで⋃m
k=1 Ak ∩ Am+1 = ∅ より⋃m

k=1 Ak ⊂ Am+1
c なので⋃m

k=1 Ak ∪ Am+1
c = Am+1

c

であることを用いた. 以上により任意のm ≥ 1 に対して主張が成り立つ. 実はこの式は
m = ∞ において成り立つ. 実際に(

∞⋃
k=1

Ak

)c

⊂

(
m⋃
k=1

Ak

)c

なので

µ∗(Ω) ≥
m∑
k=1

µ∗(Ω ∩ Ak) + µ∗

(
Ω ∩

(
m⋃
k=1

Ak

)c)

≥
m∑
k=1

µ∗(Ω ∩ Ak) + µ∗

(
Ω ∩

(
∞⋃
k=1

Ak

)c)

数列 {
∑m

k=1 µ
∗(Ω ∩ Ak)}∞m=1 ⊂ R は上に有界な単調増加列であるから収束し

µ∗(Ω) ≥
∞∑
k=1

µ∗(Ω ∩ Ak) + µ∗

(
Ω ∩

(
∞⋃
k=1

Ak

)c)

が成り立つ. 次に {Ak} ⊂ F∗ に対して ⋃∞
k=1 Ak ∈ F∗ を示そう. B1 = A1, Bk =

Ak \
⋃k−1

j=1 Aj とおくと有限加法族であることから {Bk} ⊂ F∗. また {Bk} は互いに素で
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あることおよび⋃∞
k=1 Bk =

⋃∞
k=1 Ak であることを用いると

µ∗(Ω) ≥
∞∑
k=1

µ∗(Ω ∩Bk) + µ∗

(
Ω ∩

(
∞⋃
k=1

Bk

)c)

≥ µ∗

(
Ω ∩

∞⋃
k=1

Bk

)
+ µ∗

(
Ω ∩

(
∞⋃
k=1

Bk

)c)

= µ∗

(
Ω ∩

∞⋃
k=1

Ak

)
+ µ∗

(
Ω ∩

(
∞⋃
k=1

Ak

)c)
.

以上によりF∗ は完全加法族である.

µ∗|F∗がF∗上の測度であること
{Ak} ⊂ F∗ は互いに素であるとする. このとき Ω =

⋃∞
k=1 Ak として上で得た式を適用

すると

µ∗|F∗

(
∞⋃
k=1

Ak

)
≥

∞∑
j=1

µ∗|F∗

(
∞⋃
k=1

Ak ∩ Aj

)
+ µ∗|F∗

(
∞⋃
k=1

Ak ∩

(
∞⋃
j=1

Aj

)c)

=
∞∑
j=1

µ∗|F∗(Aj).

また逆向きの不等式は µ∗が外測度であるからいつも成り立っているので

µ∗|F∗

(
∞⋃
k=1

Ak

)
=

∞∑
k=1

µ∗|F∗(Ak).

µ∗の完備性
最後に µ∗ の完備性を示そう. そのためにA ⊂ N, N ∈ F∗, µ∗(N) = 0 とする. このとき
Ω ∩ A ⊂ N なので µ∗(Ω ∩ A) ≤ µ∗(N) = 0. したがって

µ∗(Ω) ≥ µ∗(Ω ∩ Ac) = µ∗(Ω ∩ A) + µ∗(Ω ∩ Ac).

すなわちA ∈ F∗.
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第6章 ホップ・コルモゴロフの拡張定理

ホップ・コルモゴロフの定理によって, 後述する σ有限測度 µ0 に対しては前章におけ
る測度の構成がいかに上手くいっているかを理解することができる.

σ有限測度� �
有限加法族F0 とする. 測度 µ∗ : F0 → [0,∞] が σ 有限測度であるとは {Xk} ⊂ F0

で
Xk ↗ X, µ∗(Xk) < ∞

をみたすものが存在することをいう.� �� �
定理 11 (ホップ・コルモゴロフの拡張定理). 有限加法族F0 とする. µ0 : F0 → [0,∞]

を σ 有限測度とする.

F = σ[F0]

とおく. このとき
µ(A) = µ0(A) (A ∈ F0)

をみたすF 上の測度 µ : F → [0,∞] が一意的に存在する. 実は µ は µ0 から導かれ
る外測度 µ∗ の F への制限である. さらに µ∗ の決定する完備測度空間 (X,F∗, µ∗)

は
(X,F , µ) (= (X,F , µ∗|F))

の完備化になっているa.

aここで F∗ は µ∗ により決定する可測集合である.� �
証明. F0 ⊂ F∗であること
F0 ⊂ F∗ を示そう. A ∈ F0 とする. 任意のΩ ∈ 2X と ε > 0 に対して {Ak} ⊂ F0 が存
在し

Ω ⊂
∞⋃
k=1

Ak, µ∗(Ω) + ε ≥
∞∑
k=1

µ0(Ak)

が成り立つ.

Ω ∩ A ⊂
∞⋃
k=1

(Ak ∩ A), Ω ∩ Ac ⊂
∞⋃
k=1

(Ak ∩ Ac)
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でありAk ∩ Ac, Ak ∩ Ac ∈ F0 なので
∞∑
k=1

µ0 (Ω) =
∞∑
k=1

µ0(Ak ∩ A) +
∞∑
k=1

µ0(Ak ∩ Ac)

≥ µ∗(Ω ∩ A) + µ∗(Ω ∩ Ac).

したがって

µ∗(Ω) + ε ≥ µ∗(Ω ∩ A) + µ∗(Ω ∩ Ac).

ε > 0 の任意性により

µ∗(Ω) ≥ µ∗(Ω ∩ A) + µ∗(Ω ∩ Ac).

したがってA ∈ F∗. 以上によりF0 ⊂ F∗.

µ∗(A) = µ0(A) (A ∈ F0)であること
A ∈ F0 とする. µ∗ の定義から明らかに µ∗(A) ≤ µ0(A) である. したがって逆向きの不
等式を示せばよい. µ∗ の定義における A ⊂

⋃∞
k=1 Ak, {Ak} ⊂ F0 は互いに素としてよ

い*1. したがって, 任意の ε > 0 に対して互いに素な {Ak} ⊂ F0 が存在して

µ∗(A) + ε ≥
∞∑
k=1

µ0(Ak).

{Ak ∩ A} ⊂ F0 となっていて互いに素であり
⋃∞

k=1(Ak ∩ A) = A ∈ F0 なので
∞∑
k=1

µ0(Ak) ≥
∞∑
k=1

µ0(Ak ∩ A) = µ0(A).

上の不等式とあわせて
µ∗(A) + ε ≥ µ0(A).

ε > 0 の任意性より所望の不等式を得る. こうして µ∗(A) = µ0(A) (A ∈ F0) であること
が示せた. またF = σ[F0] はF0 を含む最小の完全加法族でF∗ もF0 を含む完全加法族
であるからF ⊂ F∗. したがって µ∗ はF における測度となる. µ = µ∗|F とすれば µ は
µ0 のF への拡張となっている. すなわち拡張の存在が示された.

*1実際に

µ∗∗(A) = inf

{ ∞∑
k=1

µ0(Ak); A ⊂
∞⋃
k=1

Ak, {Ak} ⊂ F0, Aj ∩Ak = ∅ (j ̸= k)

}

と定義すると µ∗(A) ≤ µ∗∗(A) は明らか. 逆向きの不等式を示すために A ⊂
⋃∞

k=1 Ak, {Ak} ⊂ F0 とす
るとき B1 = A1, Bk = Ak \

⋃k−1
j=1 Aj とおけば {Bk} ∈ F0 となり互いに素で

⋃∞
k=1 Bk =

⋃∞
k=1 Ak であ

るから
µ∗∗(A) ≤

∞∑
k=1

µ0(Bk) = µ0

( ∞⋃
k=1

Bk

)
= µ0

( ∞⋃
k=1

Ak

)
≤

∞∑
k=1

µ0(Ak).

両辺で上の様な {Ak} ⊂ F0 全体に関する下限をとれば µ∗∗(A) ≤ µ∗(A).



37

拡張の一意性
拡張の一意性を示そう. そのために µ を拡張とする. このとき µ = µ∗ であることを示
せばよい. まず µ(A) ≤ µ∗(A) (A ∈ F) を示そう. A ∈ F とする. A ⊂

⋃∞
k=1 Ak なる

{Ak} ⊂ F0 に対して
µ(A) ≤

∞∑
k=1

µ(Ak) =
∞∑
k=1

µ0(Ak)

となる. 右辺の上の様な {Ak} に関する下限が µ∗ なので下限をとって

µ(A) ≤ µ∗(A).

次に逆向きの不等式を示そう. µ0のσ有限性により{Xk} ⊂ F0でXk ↗ X, µ0(Xk) < ∞
なるものに対して

µ(Xk ∩ Ac) ≤ µ(Xk) = µ0(Xk) < ∞,

µ∗(Xk ∩ Ac) ≤ µ∗(Xk) = µ0(Xk) < ∞.

先ほど示した不等式により

µ(Xk ∩ Ac) ≤ µ∗(Xk ∩ Ac)

であるから

µ(Xk ∩ A) = µ(Xk)− µ(Xk ∩ Ac) ≥ µ∗(Xk)− µ∗(Xk ∩ Ac) = µ∗(Xk ∩ A).

両辺で k → ∞ とすれば
µ(A) ≥ µ∗(A).

したがって µ(A) = µ∗(A) (A ∈ F).

F ⊂ F∗であること
F ⊂ F∗ でありF∗ は µ∗-完備な完全加法族なのでF ⊂ F∗.

F∗ ⊂ F であること
A ∈ F∗ とする. まず µ∗(A) < ∞ の場合を考える. 任意の k ≥ 1 に対して

A ⊂
∞⋃
j=1

Ak,j,

∞∑
j=1

µ0(Ak,j) ≤ µ∗(A) +
1

k

をみたす {Ak,j}∞j=1 ⊂ F0 が存在する.

µ∗

(
∞⋃
j=1

Ak,j \ A

)
≤

∞∑
j=1

µ∗(Ak,j)− µ∗(A) =
∞∑
j=1

µ0(Ak,j)− µ∗(A) ≤ 1

k
.

したがって
B =

∞⋂
k=1

∞⋃
j=1

Ak,j
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とおけば
A ⊂ B, B ∈ F , µ∗(B \ A) = 0.

µ∗(A) = ∞ の場合は {Xk} ⊂ F0 でXk ↗ X, µ0(Xk) < ∞ なるものに対して

µ∗(A ∩Xk) ≤ µ∗(Xk) = µ0(Xk) < ∞

であるから上の議論を適用して

∃{Bk} ⊂ F : A ∩Xk ⊂ Bk, µ∗(Bk \ (A ∩Xk)) = 0

が成り立つ.

B =
∞⋃
k=1

Bk ∈ F , A = lim
k→∞

(A ∩Xk) = A ∩
∞⋃
k=1

Xk

である. A ∩Xk ↗ A なので

0 =
l∑

k=1

µ∗ (Bk \ (A ∩Xk)) = µ∗

(
l⋃

k=1

(Bk \ (A ∩Xk))

)
≥ µ∗

(
l⋃

k=1

(Bk \ A)

)
≥ 0.

また⋃l
k=1(Bk \ A) ↗ B なので

µ∗(B \ A) = lim
l→∞

µ∗

(
l⋃

k=1

(Bk \ A)

)
= 0.

したがって µ∗(A) = ∞ の場合も

∃B ∈ F : A ⊂ B, µ∗(B \ A) = 0

が成り立つ. 次にAc に対して上の議論の結果を適用するとA に対して

∃C ∈ F : C ⊂ A, µ∗(A \ C) = 0

が成り立つ様にもできる. 以上により

∃B,C ∈ F : C ⊂ A ⊂ B, µ∗(B \ C) = µ(B \ C) = 0.

このことはA ∈ F を意味する. すなわちF∗ ⊂ F . 以上により

F = F∗.

これにより証明が完了する.� �
注意 9. ホップ・コルモゴロフの定理において µ0 は σ有限測度であるという仮定に
注意しよう. 前章の測度の構成では σ 有限性は仮定されていない.� �
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� �
注意 10. ホップ・コルモゴロフの定理は, 有限加法族 F0 とその上の σ 有限測度
µ0 : F0 → [0,∞] が定義されたときに µ0 からなる外測度 µ∗ とそれにより決定され
る µ∗-可測集合全体F∗ からなる測度空間 (X,F∗, µ∗) という構成の仕方に根拠を与
えている. なぜならF = σ[F0] はF0 を含む最小の完全加法族であるし, F への µ0

の拡張 µ は一意的で µ = µ∗|F が成り立っているからである. しかも (X,F , µ) の完
備化が (X,F∗, µ∗) となっている. すなわち外測度から構成する方法から得た完備測
度空間 (X,F∗, µ∗) は (X,F0, µ0) の組みを基に構成する完備な測度空間として大き
すぎない.� �
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第7章 ルベーグ測度

この章と次の章でこれまでの一般論をRn に適用しルベーグ測度空間を構成していく.

その際に有限加法族として n 次元基本図形F0 = En を指定する.

基本図形の体積� �
n 次元右開区間

I =
n⊗

k=1

[ak, bk) ∈ In

に対して
|I| =

n∏
k=1

|bk − ak|

と定義する. 定理 2の (1) により En の元は互いに素な有限個の右開区間の和集合に
より表されることを知っている. m0 : En → [0,∞] を

A =
m⋃
j=1

Ij ∈ En (Ij ∩ Ik = ∅ (j ̸= k))

に対して
m0(A) =

m∑
j=1

|Ij|

と定義する.� �� �
定理 12. m0 : En → [0,∞] とする. A ∈ En の互いに素な有限個の右開区間の和集
合による表し方によらずm0(A) は定まる.� �
証明.

A =
m⋃
j=1

Ij =
l⋃

k=1

Jk

をふたつの互いに素な有限個の右開区間の和集合による表し方とすると

Ij = Ij ∩ A =
l⋃

k=1

Ij ∩ Jk.
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これは Ij ∩ Jk が Ij の分割であることを意味しているから

m0(Ij) =
l∑

k=1

m0(Ij ∩ Jk).

同様にして

m0(Jk) =
m∑
j=1

m0(Ij ∩ Jk).

すなわち
m∑
j=1

m0(Ij) =
m∑
j=1

l∑
k=1

m0(Ij ∩ Jk)

=
l∑

k=1

m∑
j=1

m0(Ij ∩ Jk)

=
l∑

k=1

m0(Jk).

� �
定理 13. m0 : En → [0,∞] は有限加法族 En 上の σ有限測度である.� �
証明.

m0(∅) = 0. 0 ≤ m0(A) ≤ ∞ (A ∈ En)

は明らかなので {Ak} ⊂ En, Aj ∩ Ak = ∅ (j ̸= k) に対して⋃∞
k=1 Ak ∈ En ならば

m0

(
∞⋃
k=1

Ak

)
=

∞∑
k=1

m0(Ak)

を示せばよい. 上の様な {Ak} に対してA =
⋃∞

k=1 Ak とおく. 任意の k ≥ 1 に対して

m0

(
m⋃
k=1

Ak

)
=

m∑
k=1

m0(Ak)

が成り立つことは明らかである.

m0(A) ≥ m0

(
m⋃
k=1

Ak

)
=

m∑
k=1

m0(Ak)

なので {
∑m

k=1 m0(Ak)} ⊂ R は上に有界な単調増加列である. したがって

m0(A) ≥
∞∑
k=1

m0(Ak).
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逆向きの不等式を示せばよい.

A =
⋃∞

k=1 Ak が有界集合の場合
任意の ε > 0 に対して

∃F ∈ En : F ⊂ A, m0(A) ≤ m0(F ) +
ε

2
,

∃Gk ∈ En : Ak ⊂ Gk
i, m0(Gk) ≤ m0(Ak) +

ε

2k+1

が成り立つ. ここでΩ, Ωi はそれぞれΩ ⊂ Rn の閉包と開核である.

F ⊂ A ⊂
∞⋃
k=1

Gk
i

なので {Gk
i} は有界閉集合F の開被覆である. したがってハイネ・ボレルの被覆定理に

よりm ≥ 1 が存在し
F ⊂

m⋃
k=1

Gk
i ⊂

m⋃
k=1

Gk.

したがって

m0(A) ≤ m0(F ) +
ε

2

≤ m0

(
m⋃
k=1

Gk

)
+

ε

2

≤
m∑
k=1

m0(Gk) +
ε

2

≤
∞∑
k=1

m0(Ak) + ε.

ε > 0 の任意性により
m0(A) ≤

∞∑
k=1

m0(Ak).

以上により所望の等式が得られる.

A =
⋃∞

k=1が非有界の場合
Im = [−m,m)n とすれば {A∩ Im} ⊂ En は有界である. したがって上の議論の結果を適
用して*1

m0(A ∩ Im) ≤
∞∑
k=1

(Ak ∩ Im) ≤
∞∑
k=1

m0(Ak).

また
A =

∞⋃
m=1

(A ∩ Im) = lim
m→∞

(A ∩ Im)

*1ここで用いる不等式は互いに素でなくても成り立つので.
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であるから定理 5-(1) と同様に {A ∩ Im} に対してはm0(·) と極限操作の順序交換が示
されて

m0

(
∞⋃
k=1

Ak

)
= m0(A) = lim

m→∞
m0(A ∩ Im) ≤

∞∑
k=1

m0(Ak).

以上によりm0 : En → [0,∞] は測度である. また

Im ↗ Rn, {Im} ⊂ En, m0(Im) = (2m)n < ∞

なのでm0 は σ 有限である.

以下ではX = Rn, F0 = En とした場合の外測度と可測集合の定義を改めて述べてお
く. 既に導入した定義のX = Rn, F0 = En 版なだけであって新しい定義の仕方ではない
ことを注意しておく. したがって定理 10 の結果もそのまま適用される. また既に述べた
様にホップ・コルモゴロフの定理はこの構成の仕方に根拠を与えるものである.

n次元ルベーグ外測度� �
n 次元ルベーグ外測度を

m∗(A) = inf

{
∞∑
k=1

m0(Ak); A ⊂
∞⋃
k=1

Ak, {Ak} ⊂ En

}
(A ∈ 2R

n

)

と定義する.� �
n次元ルベーグ可測集合� �
以下のように集合族Mn を定義する.

Mn =

{
A ∈ 2R

n

; m∗(Ω) ≥ m∗(Ω ∩ A) +m∗(Ω ∩ Ac) (Ω ∈ 2R
n

)

}
.

定理 10 によりMn は完全加法族である. A ∈ Mn をルベーグ可測集合という.� �
n次元ルベーグ測度� �
n次元ルベーグ測度をm∗ のMn への制限として

m = m∗|Mn

と定義する.� �
n次元ルベーグ測度空間� �
完備測度空間 (Rn,Mn,m) を n 次元ルベーグ測度空間という.� �� �
注意 11. 完備性は定理 10により保証されていることに注意.� �
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� �
定理 14. 次の (1), (2) が成り立つ.

(1) Bn ⊂ Mn. すなわちボレル集合はルベーグ可測集合である. したがって開集
合, 閉集合, 可算集合はルベーグ可測集合である.

(2) Mn は Bn のm-完備化である.� �
証明. (1), (2) はあわせて証明する.

Bn = σ[En]

であることと, m0 は有限加法族 En の σ有限測度なので

Bn ⊂ Mn

でありMn はBn のm-完備化である. したがってA ∈ Bn はルベーグ可測集合になるの
で開集合, 閉集合, 可算集合はルベーグ可測集合である.� �
例 4. 簡単のため n = 1 の場合を考える. m (Q) = 0 である. Q ∈ M1 は

Q = {qk ∈ Q; k ∈ N}

の形にかくことができる. このとき各 k に対して {qk} ⊂ [qk, qk + ε/2) とできる. し
たがってm = m∗|Mn だったことを思い出すと, 任意の ε > 0 に対して

m(Q) ≤ m

(
∞⋃
k=1

[
qk, qk +

ε

2k

))

≤
∞∑
k=1

m
([

qk, qk +
ε

2k

))
=

∞∑
k=1

m0

([
qk, qk +

ε

2k

))
=

∞∑
k=1

ε

2k
= ε.

このことはm(Q) = 0 を意味する.� �
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� �
定理 15. 次の (1) ∼ (3) が成り立つ.

(1) ルベーグ測度m : Mn → [0,∞] は σ有限測度である.

(2) ルベーグ測度m : Mn → [0,∞] は完備測度である.

(3) （正則性）A ∈ Mn とする. 任意の ε > 0 に対して閉集合 F と開集合G が存
在して

F ⊂ A ⊂ G, m(G \ F ) < ε

が成り立つ.

(3) の性質をルベーグ測度の正則性という.� �
証明. (1) m0 は En の σ有限測度なので Im ↗ Rn でm0(Im) < ∞ なる {Im} ⊂ En が存
在する. このとき {Im} ⊂ Mn, m(Im) = m0(Im) < ∞ となるのでm は σ有限測度.

(2) 完備性は定義により明らかである.

(3) まず
∃G ∈ On : A ⊂ G, m(G \ A) < ε

2

を示そう. 先にm(A) < ∞ の場合を考える. m の定義により

∃{Ak} ⊂ En : A ⊂
∞⋃
k=1

Ak, m(A) +
ε

4
= m∗(A) +

ε

4
>

∞∑
k=1

m0(Ak) = m(A)

が成り立つ. {Ak} は基本図形だから

∃Gk ∈ On : Ak ⊂ Gk, m(Gk \ Ak) <
ε

2k+2

が成り立つ. G =
⋃∞

k=1 Gk とおけばG ∈ On でA ⊂ G であり

m(G \ A) = m

(
∞⋃
k=1

(Gk \ Ak)

)
+m

(
∞⋃
k=1

Ak \ A

)

≤ ε

4
+

∞∑
k=1

m0(Ak)−m(A)

<
ε

2
.

次にm(A) = ∞ の場合を考える. Im = [−m,m)n とするとm(A∩ Im) < ∞ であるから
上の議論を適用できて

∃Gm ∈ On : A ∩ Im ⊂ Gm, m(Gm \ (A ∩ Im)) <
ε

2m+1
.
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G =
⋃∞

m=1 Gm とおくとA ⊂ G, G ∈ On であり

m(G \ A) = m

(⋃
m=1

(Gm \ A)

)

≤ m

(
∞⋃

m=1

(Gm \ (A ∩ Im))

)
(A ∩ Im ⊂ A なので)

≤
∞∑

m=1

m(Gm \ (A ∩ Im))

<
ε

2
.

A ∈ Mn ならばAc ∈ Mn なので上の証明を適用して

∃O ∈ On : Ac ⊂ O, m(O \ Ac) <
ε

2
.

F = Oc とおけば F ∈ Cn で

F ⊂ A, m(A \ F ) = m(O \ Ac) <
ε

2
.

以上の結果をあわせると

F ⊂ A ⊂ G, m(G \ F ) < ε.

集合A ⊂ Rn と x ∈ Rn に対して

A± x = {z ∈ Rn; z = y ± x, y ∈ A}

と定義する.� �
定理 16. A ∈ Mn, x ∈ Rn とする. このときA± x ∈ Mn であり

m (A± x) = m(A)

が成り立つ.� �
証明. n = 1 の場合に示そう.

A =
m⋃
k=1

[ak, bk)

とかくと
A± x =

m⋃
k=1

[ak ± x, bk ± x)
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とかける. したがってA±x ∈ E1 でm0(A±x) = m0(A). したがってB ∈ 2R に対して*2

m∗(B ± x) = m∗(B).

したがって

m∗(Ω) = m∗(Ω∓ x)

≥ m∗((Ω∓ x) ∩ A) +m∗((Ω∓ x) ∩ Ac)

= m∗(Ω ∩ (A± x)) +m∗(Ω ∩ (A± x)c).

以上によりA± x ∈ M1 でありm(A± x) = m∗(A± x) = m∗(A) = m(A).

*2{Ak} ⊂ E1 とすると (
⋃∞

k=1 Ak) + x =
⋃∞

k=1 (Ak + x) が成り立つ. したがって B ∈ 2R に対して
B ⊂

⋃∞
k=1 Ak ⇐⇒ B + x ⊂

⋃∞
k=1(Ak + x). またm0 (Ak) = m0 (Ak + x) . したがって

m∗(B) = inf

{ ∞∑
k=1

m0 (Ak) ; B ⊂
∞⋃
k=1

Ak

}

= inf

{ ∞∑
k=1

m0 (Ak + x) ; B + x ⊂
∞⋃
k=1

(Ak + x)

}
= m∗(B + x).
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可測関数� �
可測空間 (X,F) とする. 可測集合A ∈ F とする. f : A → R ∪ {±∞} とする. f が
A 上のF -可測関数であるとは, すべての a ∈ R に対し

{x ∈ A; f(x) > a} ∈ F

が成り立つことをいうa. A = X のとき単にF -可測関数であるという. またF -可測
関数を単に可測関数という言葉で置き換えることがある. 複素数値関数については
実部と虚部がそれぞれ可測関数であるとき f は可測関数であるという.

aA ∈ F の外で f は F-可測関数であるかわからないのである.� �� �
例 5. 可測空間 (X,F) とする. f : A → R を連続関数とすると {x ∈ A; f(x) > a}
は開集合であるから f はA 上の可測関数である.� �� �
定理 17. f : A → R∪ {±∞} がA 上の可測関数であることは以下の (1) ∼ (3) と同
値である.

(1) {x ∈ A; f(x) ≤ a} ∈ F (∀a ∈ R).

(2) {x ∈ A; f(x) ≥ a} ∈ F (∀a ∈ R).

(3) {x ∈ A; f(x) < a} ∈ F (∀a ∈ R).� �
証明. (1)

{x ∈ A; f(x) ≤ a} = A \ {x ∈ A; f(x) > a} ∈ F .

したがってA 上の可測関数であることと (1) は同値である.

(2)

{x ∈ A; f(x) ≥ a} =
∞⋂
k=1

{
x ∈ A; f(x) > a− 1

k

}
∈ F
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なので*1 f がA 上の可測関数であることから (2) が導かれた. また

{x ∈ A; f(x) > a} =
∞⋃
k=1

{
x ∈ A; f(x) ≥ a+

1

k

}
∈ F

なので*2 (2) より f がA 上の可測関数であることがしたがう. 以上よりA 上の可
測関数であることと (2) は同値である.

(3)

{x ∈ A; f(x) < a} = A \ {x ∈ A; f(x) ≥ a} ∈ F .

したがって (3) と (2) は同値である.

� �
問題 9. f : A → R ∪ {±∞} を可測関数とする. このとき a ∈ R に対して {x ∈
A; f(x) = a} ∈ F であることを示せ.� �� �
定理 18. f, g がA上の可測関数であるとする. このとき以下の関数もA上の可測関
数となる.

(1) α · f.

(2) f + g.

(3) |f |p (p > 0).

(4) f · g.

(5) max(f, g), min(f, g), sup
k≥1

fk, inf
k≥1

gk.

(6) lim sup
k→∞

fk, lim inf
k→∞

fk.� �
証明. (1) α = 0 の場合は明らかなので α ̸= 0 とする.

{x ∈ A; α · f(x) > a} =

{
{x ∈ A; f(x) > a/α} ∈ F (α > 0),

{x ∈ A; f(x) < a/α} ∈ F (α < 0).

*1この集合の等式は以下の様にして示せる. x0 ∈ {x ∈ A; f(x) ≥ a} とすると任意の n ≥
1 に対して f(x0) ≥ a > a − 1/k なので x0 ∈

⋂
k≥1 {x ∈ A; f(x) > a− 1/k} . 逆に x0 ∈⋂

k≥1 {x ∈ A; f(x) > a− 1/k} ならば f(x0) ≥ a がいえるのであるがこれを示すために結論を否定す
ると f(x0) < a である. N ≥ 1 を 1/N < a − f(x0) なる様に選ぶと a − 1/N < f(x0) なのだから
f(x0) = a− (a− f(x0)) < a− 1/N < f(x0) となり矛盾. したがって f(x0) ≥ a.

*2x0 ∈ {x ∈ A; f(x) > a} であるとすれば f(x0) − a ≥ 1/N なる N ≥ 1 が存在するので x0 ∈⋃
k≥1 {x ∈ A; f(x) ≥ a+ 1/k} . 逆に x0 ∈

⋃
k≥1 {x ∈ A; f(x) ≥ a+ 1/k} とすれば N ≥ 1 が存在して

f(x0) ≥ a+ 1/N > a.
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(2)

{x ∈ A; f(x) + g(x) > a} = {x ∈ A; f(x) > a− g(x)}

=
⋃
r∈Q

{x ∈ A; f(x) > r > a− g(x)}

=
⋃
r∈Q

({x ∈ A; f(x) > r} ∩ {x ∈ A; a− g(x) < r})

∈ F .

(3)

{x ∈ A; |f(x)|p > a} =

{{
x ∈ A; −a1/p < f(x) < a1/p

}
∈ F (a > 0),

∅ ∈ F (a ≤ 0).

(4)

f · g =
1

4

(
(f + g)2 − (f − g)2

)
なので (1) ∼ (3) より f · g もA上の可測関数である.

(5)

{x ∈ A; max(f, g) > a} = {x ∈ A; f(x) > a} ∪ {x ∈ A; g(x) > a} ∈ F ,

{x ∈ A; min(f, g) > a} = {x ∈ A; f(x) > a} ∩ {x ∈ A; g(x) > a} ∈ F ,{
x ∈ A; sup

k≥1
fk > a

}
=

∞⋃
k=1

{x ∈ A; fk(x) > a} ∈ F ,{
x ∈ A; inf

k≥1
fk ≥ a

}
=

∞⋂
k=1

{x ∈ A; fk(x) ≥ a} ∈ F

より可測であることがいえた. ここで, 一番最後は inf をとるので定理 17を用いて
あらかじめ等号を含めた可測関数の条件で考えている.

(6)

lim sup
k→∞

fk = inf
k≥1

(
sup
j≥k

fj

)
,

lim inf
k→∞

fk = sup
k≥1

(
inf
j≥k

fj

)
なので (5) よりA上の可測関数であることが従う.
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正部分, 負部分� �
関数 f : X → R ∪ {±∞} に対して

f+(x) = max(f(x), 0) (x ∈ X),

f−(x) = max(−f(x), 0) = −min(f(x), 0) (x ∈ X)

と定義すると

f+ ≥ 0, f− ≥ 0,

f = f+ − f−,

|f | = f+ + f−

となる. f+ を f の正部分, f− を f の負部分という.� �� �
注意 12. X = R の場合を考えてみると |f | = f+ + f− は f のグラフの負の部分を
y ≥ 0 の方に折り返したものである.� �
特性関数� �
集合A ⊂ X に対して

χA(x) =

{
1 x ∈ A

0 x ∈ X \ A

を特性関数という.� �
単純関数� �
有限個の特性関数の一次結合

f =
k∑

j=1

ajχAj

を単純関数という. ただし aj ∈ R である. Aj ∈ F であれば χAj
はAj 可測関数で

あるから f は可測関数である.� �
次の定理はルベーグ積分における関数の y 軸における分割の仕方を与える重要なもので
次章のルベーグ積分の定義に繋がるものである.
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� �
定理 19. 次が成り立つ.

(1) 可測非負関数 f : A → R に対して

fk(x) ≥ 0, fk(x) ↗ f(x) (x ∈ A)

を満たす可測単純関数列 {fk} が存在する.

(2) 可測関数 f : A → R に対して

|fk(x)| ≤ |f(x)|, fk(x) → f(x) (x ∈ A)

を満たす可測単純関数列 {fk} が存在する.� �
証明. (1) j = 0, 1, 2, . . . , k2k − 1 と k = 1, 2, . . . に対して

Ak,j =

{
x ∈ A;

j

2k
≤ f(x) <

j + 1

2k

}
, Ak,2k = {x ∈ A; f(x) ≥ k}

とおく.

fk =
k2k∑
j=0

j

2k
χAk,j

とすると {fn} は非負の値をとる単調増加する可測単純関数列である. f(x) < ∞
なる x ∈ A に対して k ≥ 1 が存在し

0 ≤ f(x)− fk(x) <
1

2k

となり, f(x) = ∞ なる点 x ∈ A では, すべての k ≥ 1 に対して
fk(x) = k

となるから, いずれの場合も各点収束で
fk(x) ↗ f(x), k → ∞.

(2)

f = f+ − f−, |f | = f+ + f−, f+, f− ≥ 0

と書けるので (i) より各点収束の意味で
gk ≥ 0, gk(x) ↗ f+(x), hk(x) ≥ 0, hk(x) ↗ f−(x)

となる {gk}, {hk} が存在する.

fk = gk − hk

とおくと |fk| = gk + hk ≤ |f | であり各点収束で fk(x) → f(x).
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ほとんどいたるところ� �
命題 P (x) がある零集合N を除いて成り立つ, すなわち

P (x) (x ̸∈ N)

であるとき命題 P (x) は, ほとんどいたるところの x で成り立つまたは, ほとんどす
べての x で成り立つなどという. このことを

P (x) (a.e. x ∈ A)

などと書くことがある.� �
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第9章 ルベーグ式積分

測度空間 (X,F , µ) とする. 測度空間 (X,F , µ) において定義する積分をルベーグ式積
分とかルベーグ型積分という. とくに (X,F , µ) = (Rn,M,m) の場合のルベーグ式積分
をルベーグ積分という. しかしルベーグ積分という場合はルベーグ式積分とルベーグ積
分を区別しないことが多い. 実際, 書籍の題名などはルベーグ式積分といわないものが
多い.

可測非負単純関数に対する積分の定義
可測非負単純関数の積分� �
f : X → [0,∞) を可測非負単純関数とする. このとき互いに素である適当な {Aj} ⊂
F と aj > 0 に対して

f =
m∑
j=1

ajχAj

と表すことができる. f の積分を∫
X

fdµ =
m∑
j=1

ajµ(Aj)

と定義する.� �� �
定理 20. f の積分は f の特性関数の一次結合としての表し方に依らず一意に定まる.� �
証明. ふたつの表し方で

m∑
j=1

ajχAj
=

l∑
k=1

bkχBk

と表されるとする. ここで {Aj} ⊂ F は互いに素, {Bk} ⊂ F は互いに素, aj, bk > 0 で
ある. このとき

m∑
j=1

ajµ(Aj) =
l∑

k=1

bkµ(Bk)
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であることを示せばよい. {Aj ∩ Bk} は互いに素で∑
j,k

ajχAj∩Bk
=
∑
j

ajχAj
=
∑
k

bkχBk
=
∑
j,k

bkχAj∩Bk

なのでAj ∩ Bk ̸= ∅ のときは aj = bk でなければならない. したがって∑
j

ajµ(Aj) =
∑
j,k

ajµ(Aj ∩Bk) =
∑
j,k

bkµ(Aj ∩ Bk) =
∑
k

bkµ(Bk).

ここで上では省略したが和の記号の中で添字は 1 ≤ j ≤ m, 1 ≤ k ≤ l の範囲を動く.� �
補題 1. f : X → [0,∞), g : X → [0,∞) を可測非負単純関数とする. このとき次が
成り立つ.

(1)

∫
X

(f + g)dµ =

∫
X

fdµ+

∫
X

gdµ

(2) f ≥ g ならば
∫
X

fdµ ≥
∫
X

gdµ

� �
証明. (1)

f =
m∑
j=1

ajχAj
, g =

l∑
k=1

blχBl

ここで, {Aj} ⊂ F は互いに素, {Bl} ⊂ F は互いに素である. このとき

(f + g)(x) =


aj + bk x ∈ Aj ∩ Bk,

aj x ∈ A′
j = Aj \

⋃l
k=1 Bk,

bk x ∈ B′
k = Bk \

⋃m
j=1 Aj

であるから ∫
X

(f + g)dµ =
∑
j,k

(aj + bk)µ(Aj ∪ Bk)

=
∑
j,k

(aj + bk)µ(Aj ∩ Bk)

+
∑
j

ajµ(A
′
j) +

∑
k

bkµ(B
′
k)

=
∑
j

aj

(
µ(A′

j) +
∑
k

µ(Aj ∩Bk)

)

+
∑
k

bj

(
µ(B′

k) +
∑
j

µ(Aj ∩ Bk)

)
=
∑
j

ajµ(Aj) +
∑
k

bkµ(Bk).
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ここで

µ(A′
j) +

∑
k

µ(Aj ∩ Bk) = µ(A′
j) + µ

(⋃
k

Aj ∩ Bk

)

= µ

(
A′

j ∪
⋃
k

Aj ∩ Bk

)

= µ

(
Aj ∩

(⋃
k

Bk

)c

∪ Aj ∩
⋃
k

Bk

)

= µ

(
Aj ∩

((⋃
k

Bk

)c

∪
⋃
k

Bk

))
= µ(Aj).

同様に µ(B′
k) +

∑
j µ(Aj ∩Bk) = µ(Bk) である.

(2) f − g は可測非負単純関数であるから (1) を用いると∫
X

fddµ =

∫
X

gdµ+

∫
X

(f − g)dµ

≥
∫
X

gdµ.

� �
補題 2. {fk} は可測非負単純関数の単調増加列で g を可測非負単純関数とする.

lim
k→∞

fk ≥ g

ならば

lim
k→∞

∫
X

fkdµ ≥
∫
X

gdµ.

� �
証明. Ω = {x ∈ X; g(x) > 0}, α = min

x∈Ω
g(x) とおく. 任意の 0 < ε < α に対して十分大

きな k ≥ 1 に対して fk(x) > g(x)− ε が成り立つので, そのような k に対して

Ωk(ε) = {x ∈ Ω; fk(x) > g(x)− α}

とおく. fk は単調増加で lim
k→∞

fk = g であるからΩk(ε) ↗ Ω.

µ(Ω) = ∞ の場合

fk ≥ (g − ε)IχΩk(ε)
≥ (α− ε)χΩk(ε)
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であるから ∫
X

fkdµ ≥ (α− ε)m̃(Ωk(ε)).

したがって

lim
k→∞

∫
X

fkdµ ≥ (α− ε) lim
k→∞

µ(Ωk(ε))

= (α− ε)µ
(
lim
k→∞

Ωk(ε)
)

= (α− ε)µ(Ω)

= ∞

≥
∫
X

gdµ

となる.

µ(Ω) < ∞ の場合
β = max

x∈X
g(x) とおく.∫

X

εχΩk(ε)dµ ≤ εµ(Ω),

∫
X

gχΩ\Ωk(ε)dµ ≤ βµ(Ω)

である. ∫
X

fkdµ ≥
∫
X

(g − ε)χΩk(ε)dµ

=

∫
X

gχΩk(ε)dµ−
∫
X

εχΩk(ε)dµ

=

∫
X

gdµ−
∫
X

gχΩ\Ωk(ε)dµ− εµ(Ωk(ε))

≥
∫
X

gdµ−
∫
X

βχΩ\Ωk(ε)dµ− εµ(Ωk(ε))

=

∫
X

gdµ− βµ (Ω \ Ωk(ε))− εµ(Ωk(ε)).

ここで, µ(Ω \ Ω1(ε)) ≤ µ(Ω) < ∞, Ω \ Ωk(ε) ↘ ∅, Ωk(ε) ↗ Ω であるから

lim
k→∞

∫
X

fkdµ ≥
∫
X

gdµ− β · 0− ε · µ(Ω).

したがって ε の任意性により示すべき不等式が示された.
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可測非負関数に対する積分の定義
可測非負関数の積分� �
f : X → [0,∞] を可測非負関数とする. 定理 19 より fk ≥ 0, fk ↗ f なる可測単純
関数列 {fk} が存在する. 補題 1 より

∫
X

fkdµ は k ≥ 1 に関して単調増加列である.

そこで f の積分を ∫
X

fdµ = lim
k→∞

∫
X

fkdµ

によって定義する.� �� �
定理 21. fk ≥ 0, fk ↗ f, gk ≥ 0, gk ↗ f を満たす可測単純関数列 {fk}, {gk} とす
る. このとき

lim
k→∞

∫
X

fkdµ = lim
k→∞

∫
X

gkdµ.� �
証明.

lim
k→∞

fk = f ≥ gk

なので補題 2 より

lim
k→∞

∫
X

fkdµ ≥
∫
X

gkdµ.

同様に逆向きの不等式も成り立つので等式となる.� �
補題 3. f : X → [0,∞], g : X → [0,∞] を可測非負関数とする. このとき次が成り
立つ.

(1)

∫
X

(f + g)dµ =

∫
X

fdµ+

∫
X

gdµ

(2) f ≥ g ならば
∫
X

fdµ ≥
∫
X

gdµ

� �
証明. (1) f, g の積分を定義する可測非負単純関数列を {fk}, {gk} とすると fk + gk ↗
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f + g だから ∫
X

(f + g)dµ = lim
k→∞

∫
X

(fk + gk)dµ

= lim
k→∞

(∫
X

fkdµ+

∫
X

gkdµ

)
= lim

k→∞

∫
X

fkdµ+ lim
k→∞

∫
X

gkdµ

=

∫
X

fdµ+

∫
X

gdµ.

(2) f − g も可測非負関数なので∫
X

fdµ =

∫
X

(g + f − g)dµ

=

∫
X

gdµ+

∫
X

(f − g)dµ

≥
∫
X

gdµ.
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一般の可測関数に対する積分の定義
可測関数の積分の定義� �
f : X → R ∪ {±∞} を一般の可測関数とするとき

f = f+ − f−

と分解される. f+, f− はそれぞれ可測非負関数であるからこれまでの方法で積分を
考えることができる. ∫

X

f+dµ

または ∫
X

f−dµ

の少なくとも一方が有限の値のとき f の積分が存在する. または積分が確定すると
いい f の積分を ∫

X

fdµ =

∫
X

f+dµ−
∫
X

f−dµ

と定義する. ∫
X

f+dµ < ∞,

∫
X

f−dµ < ∞

が成り立つとき f は µ-積分可能であるといい∫
X

fdµ =

∫
X

f+dµ−
∫
X

f−dµ

と定義する. ∫
X

|f |dµ =

∫
X

f+dµ+

∫
X

f−dµ

なので f が µ-積分可能であるとは∫
X

|f |dµ < ∞

であることと同値である. A ⊂ X においては

f̃(x) =

{
f(x) (x ∈ A)

0 (x ∈ X \ A)

と定義し ∫
A

fdµ =

∫
X

f̃dµ

と定義する.� �
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複素数値可測関数� �
f が複素数値の可測関数のときは実数値の可測関数 f1, f2 によって f = f1 + if2 と
表される. このとき積分を∫

X

fdµ =

∫
X

f1dµ+ i

∫
X

f2dµ

と定義する.� �
ここまでに定義した積分がルベーグ式積分と呼ばれるものである.
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第10章 級数の積分による定式化

級数∑∞
j=−∞ f(j) をルベーグ式積分として定式化しておくとルベーグ式積分に対して

導く定理をそのまま適用できるので便利なことがある. そのための定式化を紹介して
おく.

可測空間� �
X = Z とする.

(
Z, 2Z

) は可測空間となる.� �
数え上げ測度� �
集合Ωの濃度を ♯Ω とかく. 可測空間 (Z, 2Z) において

µ(A) = ♯A (A ∈ 2Z)

と定義する. こうするとµ(∅) = 0で 0 ≤ µ(A) ≤ ∞であり{Ak} ⊂ 2Z, Aj∩Ak = ∅
に対してµ (

⋃∞
k=1 Ak) =

∑∞
k=1 µ(Ak)となるのでµは測度である. こうして (Z, 2Z, µ)

は測度空間となる.� �
級数のルベーグ式積分による表示� �
数列 f : Z → R ∪ {±∞} のルベーグ式積分を∫

Z
fdµ

とかく. このルベーグ式積分の値は結局

a · µ ({j ∈ Z; f(j) = a})

の形の項を取り得る値 a についてすべて足し合わせたものになっているので∫
Z
fdµ =

∑
j∈Z

f(j)

ということである.� �� �
例 6. µ({0}) = 1, µ({1, 2}) = 2, µ({1, 2, 3}) = µ ({1, 6, 19}) = 3.� �
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おわりに

ここまでにルベーグ式積分の定義を与えることができた. ふつうならこの先の基本的
な学習事項として以下の事柄がある.

• 積分の性質

• 収束定理

• フビニの定理

• リーマン積分とルベーグ積分の関係

• ラドン・ニコディムの定理

しかしこの資料でここまで学習できているのであればその先のことは適宜, 自分に合っ
た文献を選んで独習が可能である. ルベーグ積分論でとくに難しいのは測度論であるか
らこの資料ではその部分を中心に解説した.
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