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第1章 2次元ユークリッド空間 I

記法� �
ふたつの実数 x1 ∈ R と x2 ∈ R の組 x = (x1, x2) からなる集合

R2 = {x = (x1, x2); x1 ∈ R, x2 ∈ R}

を 2次元ユークリッド空間とよぶ. R2 の元を

a,b, c, . . . ,x,y, z

の様にアルファベットやギリシャ文字の太字で表す. 太字の x とかいた R2 の元を
座標で表すときは通常の文字 x に座標を区別する添え字をつけて

x = (x1, x2)

とかく.� �
ノルムと距離� �
x ∈ R2 のノルムは

‖x‖ =
√
x21 + x22

で定義される. 2点 x ∈ R2 と y ∈ R2 の距離 d(x,y) は

d(x,y) = ‖x− y‖ =
√
(x1 − y1)2 + (x2 − y2)2

で定義される.� �
開球� �
a ∈ R2 と r > 0 に対して

Br (a) =
{
x ∈ R2; ‖x− a‖ < r

}
を a を中心とする半径 r の開球とよぶ.� �

R2 における原点を通常の 0 と同じ記号で 0 = (0, 0) ∈ R2 とかくことがある.
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点列� �
ふたつの数列 {an,1}∞n=1 と {an,2}∞n=1 によって

an = (an,1, an,2) (n ≥ 1)

で定まる {an} = {an}∞n=1 をR2 の点列と呼ぶ.� �� �
点列 {an} が a ∈ R2 に収束するとは, 任意の ε > 0 に対してN = N(ε) ≥ 1 が存在
し n ≥ N ならば

‖an − a‖ < ε

が成り立つことである. このことを

lim
n→∞

an = a

とかく.� �� �
注意 1. 点列 {an} が a に収束するということは数列 {‖an − a‖} が 0 に収束するこ
とと同値である.� �� �
定理 1. 点列 {an} が a ∈ R2 に収束することの必要十分条件は

lim
n→∞

an,1 = a1, lim
n→∞

an,2 = a2

が成り立つことである.� �
証明. 次の不等式が成り立つ:

max(|x1|, |x2|) ≤
√
x21 + x22 ≤ |x1|+ |x2|.

実際

|x1| =
√
x21

≤
√
x21 + x22.

同様に

|x2| ≤
√
x21 + x22

したがって

max(|x1|, |x2|) ≤
√
x21 + x22.
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また √
x21 + x22 ≤ |x1|+ |x2|

は示すために

(|x1|+ |x2|)2 −
(√

x21 + x22

)2

= |x1|2 + 2|x1||x2|+ |x22| − |x1|2 − |x2|2

= 2|x1||x2| ≥ 0

すなわち (√
x21 + x22

)2

≤ (|x1|+ |x2|)2

を得た. ここで, x21 = |x1|2 に注意. 上で示した不等式を用いると

lim
n→∞

an = a

であることと

lim
n→∞

an,1 = a1, lim
n→∞

an,2 = a2

が必要十分であることがいえる.

コーシー列� �
{an} がコーシー列であるとは, 任意の ε > 0 に対して N = N(ε) ≥ 1 が存在し
n,m ≥ N ならば

‖an − am‖ < ε

が成り立つことをいう.� �� �
定理 2. 点列 {an} が収束することの必要十分条件は {an} がコーシー列であること
である.� �
証明. {an} が収束するということは {an,1} と {an,2} が収束することであるがこれは
{an,1} と {an,2} が R の数列としてコーシー列であることと必要十分である. このこと
と定理 1 から {an} が収束することの必要十分条件は {an,1} と {an,2} がR の数列とし
てコーシー列であることがいえる.� �
注意 2. コーシー列とは番号N 以降の項が互いに ε 程度だけ離れていることをいっ
ている. また定理によって極限点が分からなくても一般項から収束の判定が可能で
ある.� �
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� �
定理 3 (コーシー・シュワルツの不等式). x ∈ R2, y ∈ R2 に対して

|(x,y)| ≤ ‖x‖‖y‖

が成り立つ. ここで, 内積 : (x,y) = x1y1 + x2y2.� �
証明. y = 0 のときは明らかなのでそうでない場合を考える.

t = −(x,y)

‖y‖2

とおく.

‖x‖ =
√
(x,x)

であることに注意し同じもの同士の内積を計算すると

0 ≤ (x+ ty,x+ ty)

= ‖x‖2 + 2t(x,y) + t2‖y‖2

= ‖x‖2 − 2
|(x,y)|2

‖y‖2
+

|(x,y)|2

‖y‖2

= ‖x‖2 − |(x,y)|2

‖y‖2
.

両辺 ‖y‖2 倍して移項して整頓すれば所望の不等式を得る.

定理 4 (三角不等式). x,y ∈ R2 とする.

‖x+ y‖ ≤ ‖x‖+ ‖y‖

が成り立つ.

証明. 両辺を 2乗してからシュワルツの不等式を使うことで示せる.
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第2章 2次元ユークリッド空間 II

近傍� �
x ∈ R2 に対してBε(x) を x の ε-近傍という. 集合N が x の適当な ε-近傍を含むと
き x の近傍という.� �
開集合� �
Ω ⊂ R2 が開集合とは, 任意の a ∈ Ω に対して ε > 0 が存在し

Bε (a) ⊂ Ω

が成り立つことをいう.� �
閉集合� �
Ω ⊂ R2 が閉集合とはΩ の補集合Ωc が開集合であることをいう.� �
内部� �
Ω ⊂ R2 の内部Ωi を

Ωi =
{
x ∈ R2; ∃ε > 0 : Bε(x) ⊂ Ω

}
と定義する.� �
弧状連結� �
Ω ⊂ R2 の任意の異なる 2 点 x0 ∈ Ω, x1 ∈ Ω について連続写像w : [0, 1] → Ω で

w(0) = x0, w(1) = x1

をみたすものが存在するときΩ は弧状連結という.� �
領域� �
弧状連結な開集合Ω ⊂ R2 を領域という.� �
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有界� �
集合Ω ⊂ R2 について, 任意の a ∈ Ω に対して r > 0 が存在して

Ω ⊂ Br(a)

が成り立つときΩ は有界という.� �
境界� �
Ω ⊂ R2 の境界 ∂Ω を

∂Ω =
{
x ∈ R2; ∀ε > 0. Ω ∩ Bε(x) 6= ∅, Ωc ∩ Bε(x) 6= ∅

}
と定義する.� �
閉領域� �
領域Ω ⊂ R2 に対してΩ ∪ ∂Ω を閉領域という.� �� �
定理 5 (ボルツァノ・ワイエルシュトラスの定理). 有界な点列 {an} ⊂ R2 は収束す
る部分列をもつ.� �
証明. {an} = {(an,1, an,2)} は有界なので {an,1}, {an,2} ⊂ R はそれぞれ R における有
界な数列である. したがって {an,1} は収束する部分列 {an(k),1} をもつ. このとき, も
う一方の成分の数列の番号を n(k) に変えた部分列 {an(k),2} は再び有界なので収束する
部分列 {añ(k),2} をもつ. こうして番号を共通の ñ(k) にして構成した部分列 {añ(k)} =

{(añ(k),1, añ(k),2)} は収束する.

いくつかの例
ここまで少し抽象的な定義をしてきたが, 今後の議論で開集合, 閉集合, 領域などと
いう用語が出てきたら以下のものを念頭におけば良い. 以下で挙げる例は図を描くとイ
メージをしやすい.
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� �
例 1 (開球). r > 0 とする. 次のR2 における開球

Ω1 = Br(0) =
{
x ∈ R2; ‖x‖ < r

}
は開集合である. 実際に, a ∈ Ω1 に対して

ε = r − ‖a‖ > 0

とすると

Bε(a) ⊂ Ω1.

なぜなら任意の x ∈ Bε(a) に対して

‖x‖ = ‖x− a+ a‖
≤ ‖x− a‖+ ‖a‖
< ε+ ‖a‖
= r.

したがって x ∈ Ω1. ここで三角不等式を用いた.� �
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� �
例 2 (閉球). r > 0 とする. 次のR2 の閉球

Ω2 = Br(0) =
{
x ∈ R2; ‖x‖ ≤ r

}
は閉集合である. 実際に, Ωc

2 が開集合であることを示せばよいのであるが

Ωc
2 =

{
x ∈ R2; ‖x‖ > r

}
なので a ∈ Ωc

2 に対して

ε = ‖a‖ − r

とすると

Bε(a) ⊂ Ωc
2

となる. なぜなら任意の x ∈ Bε(a) が x ∈ Ωc
2 でないとすると ‖x‖ ≤ r である.

‖a‖ = ‖a− x+ x‖
≤ ‖x− a‖+ ‖x‖
< ε+ r.

すなわち ε = ‖a‖ − r < ε となり矛盾. したがって x ∈ Ωc
2.� �
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� �
例 3 (開球は領域). r > 0 とすると Br(0) は領域である. 実際, 2点 x0 ∈ Br(0),

x1 ∈ Br(0) として写像w を

w(t) = (1− t)x0 + tx1, t ∈ [0, 1]

で定めると t 変数に関して連続で

w(0) = x0, w(1) = x1

となっている. さらに

‖(1− t)x0 + tx1‖ ≤ (1− t)‖x0‖+ t‖x1‖
< (1− t)r + tr

= r

を t ∈ [0, 1] に対して得る. したがって

w ([0, 1]) ⊂ Br(0).

ここで, 三角不等式を用いた.� �� �
例 4 (開球の境界).

∂B1(0) =
{
x ∈ R2; ‖x‖ = 1

}
.� �� �

例 5 (閉球の境界).

∂B1(0) =
{
x ∈ R2; ‖x‖ = 1

}
.� �� �

例 6 (閉球は閉領域). 開球とその境界の合併集合は閉球になっている. すなわち閉
球は閉領域になっている. 実際に, 閉領域

B1(0) ∪ ∂B1(0) = {x ∈ R2; ‖x‖ < 1} ∪ {x ∈ R2; ‖x‖ = 1}
= {x ∈ R2; ‖x‖ ≤ 1}

は閉球B1(0) と等しい.� �
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第3章 極限と連続性

2変数関数� �
D ⊂ R2 において定義されたR への対応

f : D → R, f(x) = f(x1, x2) (x ∈ D)

をD を定義域とする 2変数関数という. 2変数関数のことを単に関数と呼ぶことが
ある. f の値域を

R(f) = {y = f(x); x ∈ D}

とかく.� �� �
例 7. f : R2 → R を

f(x) = ‖x‖2 (x ∈ R2)

と定義する. これは 2変数関数である.� �� �
例 8. D = (R \ {0})× R とする. f : D → R を

f(x) =
x2
x1

(x ∈ D)

と定義する. これは 2変数関数である.� �� �
例 9. f : R2 → R を

f(x) = ex1 sin x2 (x ∈ R2)

と定義する. これは 2変数関数である.� �� �
例 10. D = (0,∞)× R とする. f : D → R を

f(x) = x2 log(x1) (x ∈ D)

と定義する. これは 2変数関数である.� �
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2変数関数の極限� �
開集合D ⊂ R2 とする. a ∈ D とする. f : D → R とする. 任意の ε > 0 に対して
δ = δ(ε) > 0 が存在して

x ∈ D ∩Bδ(a)

ならば

|f(x)− α| < ε

がなりたつとき α ∈ R を f の極限値といい

lim
x→a

f(x) = α

とかく.� �
1変数関数の極限値の場合と同様の公式が成り立つ.� �
定理 6. lim

x→a
f(x) = α ∈ R, lim

x→a
g(x) = β ∈ R とする. このとき次の (1) ∼ (3) が成

り立つ.

(1) lim
x→a

(c1f(x) + c2g(x)) = c1α + c2β (c1, c2 ∈ R)

(2) lim
x→a

f(x)g(x) = αβ

(3) lim
x→a

1

g(x)
=

1

β
ただし g 6= 0, β 6= 0

� �� �
例 11. 例 1で定義した 2変数関数 f(x) = ‖x‖2 の原点 0 における極限値を求めて
みよう.

lim
x→0

‖x‖2 = lim
x→0

x21 + lim
x→0

x22

= 0 + 0

= 0.

ここで lim
x→0

x21 = 0, lim
x→0

x22 = 0 であることを用いた.� �
1変数の場合に極限値が確定するのは右側極限値と左側極限値が一致する場合のことを
いった. 2変数の場合にも x → a という極限をとるときに x は平面内の直線や曲線に
沿って a に近づくことになる. 2変数関数の極限は a への近づけ方に依存せず極限が一
定の値に確定する場合に極限値が確定する. すなわち

p(θ) = (cos θ, sin θ) (0 ≤ θ ≤ 2π)
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として

x = a+ rp(θ)

とおき

lim
r→0

f(a+ rp(θ))

の値が 0 ≤ θ ≤ 2π に対して一様に確定しなければならない. 以上のことを定理として
まとめておく.� �
定理 7. 開集合D ⊂ R2 とする. a ∈ D に対し ρ > 0 が存在しBρ(a) ⊂ D をみたす
とする. このとき f : D → R が

lim
x→a

f(x) = α

であることの必要十分条件は

lim
r→0

(
sup

0≤θ≤2π
|f(a+ rp(θ))− α|

)
= 0

が成り立つことである. ここで p(θ) = (cos θ, sin θ) (0 ≤ θ ≤ 2π).� �
証明. 以下の議論では x = a + rp(θ) とおくと ‖x − a‖ = r であることに注意しよう.

（必要性）lim
x→a

f(x) = αであるとする. すなわち,任意の ε > 0に対して 0 < δ = δ(ε) < ρ

が存在し x ∈ D ∩ Bδ(a) ならば |f(x)− α| < ε/2 が成り立つ. 任意の x ∈ D は

x = a+ rp(θ) (r > 0)

と表すことができる. したがって 0 < r < δ ならば x = a+ rp(θ) ∈ Bδ(a) となり

|f(a+ rp(θ))− α| = |f(x)− α| < ε

2

なので
sup

0≤θ≤2π
|f(a+ rp(θ))− α| ≤ ε

2
< ε.

（十分性）逆に lim
r→0

(
sup

0≤θ≤2π
|f(a+ rp(θ))− α|

)
= 0 とする. すなわち, 任意の ε > 0 に

対して 0 < δ = δ(ε) < ρ が存在し 0 < r < δ ならば

sup
0≤θ≤2π

|f(a+ rp(θ))− α| < ε

が成り立つことを仮定する. 任意の x ∈ D ∩ Bδ(a) とする. このとき

x = a+ rp(θ) (0 < r < δ)
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と表すことができる. 仮定により 0 < r < δ となるので

|f(x)− α| = |f(a+ rp(θ))− α|
≤ sup

0≤θ≤2π
|f(a+ rp(θ))− α|

< ε

が成り立つ.� �
例 12 (θに依存せずに極限値が確定する例). 関数

f(x) =
x1x2√
x21 + x22

(x ∈ R2 \ {0})

とする. このとき lim
x→0

f(x) = 0 である. 実際に x = rp(θ) とおくと

f(rp(θ)) = r cos θ sin θ

=
r

2
sin 2θ

である. したがって

lim
r→0

(
sup

0≤θ≤2π
|f(rp(θ))|

)
= lim

r→0

r

2
= 0.

� �� �
例 13 (θに依存し極限値が存在しない例). 関数

f(x) =
x1x2
x21 + x22

(x ∈ R2 \ {0})

とする. このとき極限値 lim
x→0

f(x) は存在しない. 実際に

f(rp(θ)) = cos θ sin θ =
1

2
sin 2θ

である. したがって
f(rp(0)) = 0, f(rp(π/4)) = 1

なので r → 0 のときに θ に対して一様に極限値が確定しない. もしある定数 α ∈ R
に収束するのであれば∣∣∣∣12 sin 2θ − α

∣∣∣∣ ≤ sup
0≤θ≤2π

∣∣∣∣12 sin 2θ − α

∣∣∣∣ = 0

となる必要があるが α が定数なので左辺は適当な θ に対して 0 でない. このことは
矛盾である.� �
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� �
例 14. 関数

f(x) =
x1
‖x‖

(x ∈ B1(0)
c)

について ‖x‖ → ∞ の極限を考える. x2 = 0 として x1-軸に沿って極限をとると

lim
∥x∥→∞
x2=0

x1
‖x‖

= ±1.

x1 = 0 として x2-軸に沿って極限をとると

lim
∥x∥→∞
x1=0

x1
‖x‖

= 0.

極限値は存在しない.� �� �
注意 3. 解析学は極限を扱う分野である. 解析学のほとんど全ての演算は極限操作
であるといえる. 微分や積分を記号でかくと一見, 極限には見えないがもともとは
極限によって定義される演算である. だから解析学では極限の順序交換に関する問
題が頻繁に起こる.� �� �
定理 8 (2重極限の順序交換). D ⊂ R2 とする. a ∈ D とする. 関数 f : D → R と
する. 極限値

lim
x→a

f(x) = α

が存在するとする. このとき以下の (1), (2) が成り立つ.

(1) x2 6= a2 に対して lim
x1→a1

f(x1, x2) = g(x2) が存在するとき

lim
x2→a2

(
lim
x1→a1

f(x1, x2)

)
= lim

x2→a2
g(x2) = α.

(2) x1 6= a1 に対して lim
x2→a2

f(x1, x2) = h(x1) が存在するとき

lim
x1→a1

(
lim
x2→a2

f(x1, x2)

)
= lim

x1→a1
h(x1) = α.

すなわち上述の g, h が存在すれば極限の順序交換が可能となる.� �
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証明. (1) 任意の ε > 0 に対して δ = δ(ε) > 0 が存在し x ∈ D ∩ Bδ(a) ならば

|f(x)− α| < ε

2
.

また lim
x1→a1

f(x1, x2) = g(x2)の仮定より |x2−a2| < δ/
√
2なるx2 に対して δ1 = δ1(ε) > 0

が存在し |x1 − a1| < δ1/
√
2 ならば

|f(x)− g(x2)| <
ε

2

が成り立つ. したがって |x2 − a2| < δ/
√
2 ならば, この x2 に応じて |x0 − a1| <

(1/
√
2)min(δ, δ1) をみたす x0 を選んで

|g(x2)− α| = |g(x2)− f(x0, x2) + f(x0, x2)− α|
≤ |g(x2)− f(x0, x2)|+ |f(x0, x2)− α|
< ε.

これは lim
x2→a2

g(x2) = α であることをいっている.

(2) (1) と同じ様に示すことができる.

連続� �
部分集合D ⊂ R2 とする. f : D → R が a ∈ D で連続であるとは, 任意の ε > 0 に
対して δ = δ(a, ε) > 0 が存在し x ∈ D ∩Bδ(a) ならば

|f(x)− f(a)| < ε

が成り立つことをいう. D の任意の点で連続なとき f はD で連続であるという.� �� �
定理 9 (最大値・最小値の原理). 有界閉集合K ⊂ R2 とする. このとき連続関数
f : K → R はK 上で最大値・最小値をとる.� �
証明. 1 変数の場合と同じ様に証明できる.� �
定理 10 (中間値の定理). 弧状連結な部分集合D ⊂ R2 とする. 連続関数 f : D → R
とする. 任意の x,y ∈ D に対して

f(x) ≤ f(y)

とする. このとき任意の
f(x) ≤ µ ≤ f(y)

に対して x0 が存在し µ = f(x0) が成り立つ.� �
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証明. 連続曲線 c : [0, 1] → D を

c(0) = x, c(1) = y

をみたすものとする. このとき g = f ◦ c とすると g は連続関数で

g(0) = f(x) ≤ µ ≤ f(y) = g(1)

をみたす. 1変数の中間値の定理より t0 ∈ [0, 1] が存在し

f(c(t0)) = g(t0) = µ.

したがって c(t0) ∈ D が求めるものである.

一様連続� �
部分集合D ⊂ R2 とする. f : D → Rとする. f が一様連続であるとは,任意の ε > 0

に対して δ = δ(ε) > 0 が存在して ‖x− y‖ < δ をみたす任意の x,y ∈ D に対して

|f(x)− f(y)| < ε

が成り立つことをいう.� �� �
定理 11. 有界閉集合K ⊂ R2 とする. このとき f : K → R はK 上で一様連続で
ある.� �
証明. 1 変数の場合と同じ様に証明できる.
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第4章 偏導関数

記法� �
x1-方向と x2-方向の単位ベクトルをそれぞれ e1 = (1, 0), e2 = (0, 1) とかく.� �
偏微係数� �
開集合D ⊂ R2 とする. 関数 f : D → R とする. a ∈ D における f の x1 について
の偏微係数 fx1(a) と x2 についての偏微係数 fx2(a) をそれぞれ

fx1(a) = lim
h→0

f(a+ he1)− f(a)

h
,

fx2(a) = lim
h→0

f(a+ he2)− f(a)

h

と定める.� �� �
注意 4. 具体的にかくと

fx1(a) = lim
h→0

f(a+ he1)− f(a)

h
= lim

h→0

f(a1 + h, a2)− f(a1, a2)

h
,

fx2(a) = lim
h→0

f(a+ he2)− f(a)

h
= lim

h→0

f(a1, a2 + h)− f(a1, a2)

h

である.� �
偏導関数� �
x ∈ D に対して fxj(x) を対応させる関数 gj : x 7→ fxj(x) を偏導関数といい gj = fxj
とかく.� �� �
注意 5. 1変数関数の微分を 2変数に拡張したものが偏微分であると考えるのはあま
り適切とはいえない. 次の章で扱う全微分可能性が 1変数における微分可能性に対
応するものである.� �
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記法� �
f の偏導関数 fx1 , fx2 をそれぞれ

fx1 = ∂x1f =
∂f

∂x1
, fx2 = ∂x2f =

∂f

∂x2

とかくことがある. また k ≥ 1 を自然数として k 階の偏導関数は

fx1x1x2 · · ·x2︸ ︷︷ ︸
k 個

=
∂kf

∂x2 · · · ∂x2∂x21

などとかくことがある.� �
Ck級� �
f : D → R の k 階以下の偏導関数がすべて連続のとき f をCk 級の関数という.� �� �
例 15. 次で定義される関数の 2階までの偏導関数と点 a = (1, 0) における偏微係数
を求めてみる.

f(x) = x31 + x22 + x1x2 (x ∈ R2).

1階の偏導関数は
fx1(x) = 3x21 + x2, fx2(x) = 2x2 + x1

と求められる. 2 階の導関数は

fx1x1(x) = 6x1, fx1x2(x) = 1,

fx2x2(x) = 2, fx2x1(x) = 1

と求められる. a = (1, 0) における偏微係数は

fx1(a) = 3, fx2(a) = 2

である.� �
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� �
例 16 (原点において fx1x2(0) 6= fx2x1(0)となる例). 関数 f : R2 → R を

f(x) =

x1x2
x21 − x22
x21 + x22

(x 6= 0)

0 (x = 0)

と定義する.

(1) x 6= 0 の場合

fx1(x) =
3x21x2 − x32
x21 + x22

− 2(x41x2 − x21x
3
2)

(x21 + x22)
2

, fx2(x) =
x31 − 3x1x

2
2

x21 + x22
− 2(x31x

2
2 − x1x

4
2)

(x21 + x22)
2

,

fx1x2(x) =
x21 − x22
x21 + x22

+
8x21x

2
2(x

2
1 − x22)

(x21 + x22)
3

と求められる. 同様に fx2x1(x) が求まり fx1x2(x) = fx2x1(x) (x 6= 0) が確かめられ
る.

(2) x = 0 の場合

fx1(0) = lim
h→0

f(he1)− f(0)

h
= lim

h→0

0

h
= 0.

同様に fx2(0) = 0. h 6= 0 とする. (1) により x = he2 を代入すると fx1(he2) = −h.
x = he1 を代入すると fx2(he1) = h. したがって

fx1x2(0) = lim
h→0

fx1(he2)− fx1(0)

h
= −1,

fx2x1(0) = lim
h→0

fx2(he1)− fx2(0)

h
= 1.

以上により fx1x2(0) 6= fx2x1(0) となる.� �� �
定理 12. 開集合D ⊂ R2 とする. f : D → R とする. a ∈ D の適当な近傍で偏導関
数 fx1x2 , fx2x1 が存在し, a においてこれらが連続ならば

fx1x2(a) = fx2x1(a)

が成り立つ.� �
証明. h ∈ R2 \ {0} は ‖h‖ が十分小さいものとする.

δ(h) = f(a+ h)− f(a+ h1e1)− f(a+ h2e2) + f(a)
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とおく. g を

ψ(x1) = f(x1, a2 + h2)− f(x1, a2)

とおくと 1変数関数の平均値の定理により 0 < θ1, θ2 < 1 が存在して

δ(h) = ψ(a1 + h1)− ψ(a1)

= ψ′(a1 + θ1h1)h1

= (fx1(a1 + θ1h1, a2 + h2)− fx1(a1 + θ1h1, a2))h1

= fx1x2(a1 + θ1h1, a2 + θ2h2)h1h2

が成り立つ. したがって

lim
h→0

δ(h)

h1h2
= lim

h→0
fx1x2(a1 + θ1h1, a2 + θ2h2)

= fx1x2(a).

一方で

φ(x2) = f(a1 + h1, x2)− f(a1, x2)

とおくと上の議論と同様にして 0 < θ3, θ4 < 1 が存在して

δ(h) = φ(a2 + h2)− φ(a2)

= φ′(a1 + θ3h2)h2

= (fx2(a1 + h1, a2 + θ3h2)− fx2(a1, a2 + θ3h2))h2

= fx2x1(a1 + θ4h1, a2 + θ3h2)h1h2.

したがって

lim
h→0

δ(h)

h1h2
= fx2x1(a).

極限値は一意的なので

fx1x2(a) = fx2x1(a).
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第5章 全微分可能性, 合成関数の偏微分

全微分可能性
記法� �
偏微分可能な関数 f に対して∇f = (∂x1f, ∂x2f) とかく.� �
全微分可能性� �
開集合D ⊂ R2 とする. f : D → R が a ∈ D で全微分可能であるとは, f は a で偏
微分可能で

lim
h→0

f(a+ h)− f(a)− (∇f(a),h)
‖h‖

= 0

が成り立つことをいう. D の任意の点で全微分可能なとき f はD において全微分
可能であるという. ここで, 内積 : (x,y) = x1y1 + x2y2.� �� �
注意 6. aにおいて偏微分可能であることを前提とせずに aにおける全微分可能性を
定義する文献もある. しかしそうしても結局, 全微分可能ならば偏微分可能である
ことがいえるので, ここでは初めから偏微分可能であることを前提として全微分可
能性の定義を与えた. 偏微分可能でない関数は全微分可能ではないからである. 実
際に, 文献によってはA ∈ R2 が存在して

lim
h→0

f(a+ h)− f(a)− (A,h)

‖h‖
= 0

が成り立つときに f は a で全微分可能であると定義する. このとき h2 = 0 とおき
h1 → 0 の極限をとればA1 = ∂x1f(a) を得る. 同様にA2 = ∂x2f(a) を得る.� �� �
注意 7. 1 変数の場合には∇f = f ′ と考え, 内積を通常の積とみなせば全微分可能
性を定める式は微分可能性を定める式となる.� �� �
定理 13. 開集合D ⊂ R2 とする. f : D → R が a ∈ D において全微分可能であれ
ば a において連続である.� �
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証明.

|f(a+ h)− f(a)| = |f(a+ h)− f(a)− (∇f(a),h) + (∇f(a),h)|
‖h‖

· ‖h‖

≤ |f(a+ h)− f(a)− (∇f(a),h)|
‖h‖

· ‖h‖+ |(∇f(a),h)|

≤ |f(a+ h)− f(a)− (∇f(a),h)|
‖h‖

· ‖h‖+ ‖∇f(a)‖ ‖h‖

−−→
h→0

0.

したがって連続.� �
D = R2 とする. f(x) = x21+x22+x1x2, x ∈ D は任意の a ∈ D において全微分可能
である. 実際, ∇f(a) = (2a1 + a2, 2a2 + a1) である. このときh ∈ R2 \ {0} に対して

f(a+ h)− f(a) = a21 + 2a1h1 + h21 + a22 + 2a2h2 + h22

+ a1a2 + a1h2 + a2h1 + h1h2 − a21 − a22 − a1a2

= 2a1h1 + h21 + 2a2h2 + h22 + a1h2 + a2h1 + h1h2

と

(∇f(a),h) = 2a1h1 + a2h1 + 2a2h2 + a1h2

を得る. したがって
|f(a+ h)− f(a)− (∇f(a),h)|

‖h‖
=

|h21 + h22 + h1h2|
‖h‖

≤ |h21 + h22|+ |h1h2|
‖h‖

≤ 2‖h‖2

‖h‖
= 2‖h‖
−−→
h→0

0.� �
上の様な計算を実行しなくても次の定理によって全微分可能であることがいえる.� �
定理 14. 開集合D ⊂ R2 とする. f : D → R がD においてC1 級であればD にお
いて全微分可能である.� �
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証明. a ∈ D とする. 1 変数関数の平均値の定理から

f(a+ h)− f(a)− (∇f(a),h)
= (f(a+ h)− f(a+ h2e2)) + (f(a+ h2e2)− f(a))− (∇f(a),h)
= fx1(a1 + θ1h1, a2 + h2)h1 + fx2(a1, a2 + θ2h2)k − fx1(a)h1 − fx2(a)h2

= (fx1(a1 + θ1h1, a2 + h2)− fx1(a))h1 + (fx2(a1, a2 + θ2h2)− fx2(a))h2.

以上より

|f(a+ h)− f(a)− (∇f(a),h)|
≤ |fx1(a1 + θ1h1, a2 + h2)− fx1(a)| |h1|+ |fx2(a1, a2 + θ2h2)− fx2(a)| |h2|
≤ |fx1(a1 + θ1h1, a2 + h2)− fx1(a)| ‖h‖+ |fx2(a1, a2 + θ2h2)− fx2(a)| ‖h‖.

したがって

lim
h→0

f(a+ h)− f(a)− (∇f(a),h)
‖h‖

= 0

ここで f がC1級であること, すなわち fx1 , fx2 が連続であることを用いた. したがって
f は全微分可能である.

接平面� �
開集合D ⊂ R2 とする. a ∈ D とする. f : D → R は a ∈ D で全微分可能とする.

P =

{
z ∈ R; z = (∇f(a),x− a) + f(a)

}
で定まる平面をグラフ

G =

{
(x, z) ∈ D × R; z = f(x), x ∈ D

}
の (a, f(a)) における接平面という.� �� �
注意 8. 1変数の場合は P において∇f = f ′ で内積は通常の積となり接線の方程式
を表す式となる.� �
合成関数の偏微分
記法� �
集合X からR2 への写像 f : X → R2 の値域を関数の値域と同じ様にR(f) とかく.� �
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� �
定理 15 (連鎖律 1). 開集合D ⊂ R2 とする. f : D → R は a ∈ D で全微分可能とす
る. さらに t0 ∈ R で微分可能な関数 φ と ψ に対して Φ = (φ, ψ) とおき a = Φ(t0),

R(Φ) ⊂ D をみたすとする. このとき f ◦Φ = f(φ, ψ) は t の関数として t0 において
微分可能で

d(f ◦ Φ)
dt

(t0) =
∂f

∂x1
(a)

dφ

dt
(t0) +

∂f

∂x2
(a)

dψ

dt
(t0)

が成り立つ.� �
証明. f は全微分可能なので

f(a+ h)− f(a) = fx1(a)h1 + fx2(a)h2 + ε(h)‖h‖

とかける. ここで ε(·) は
lim
h→0

ε(h) = 0, ε(0) = 0

をみたすものとする. 上式において h1 = φ(t0 +∆t)−φ(t0), h2 = ψ(t0 +∆t)−ψ(t0) と
おくと

1

∆t
{f(φ(t0 +∆t), ψ(t0 +∆t))− f(φ(t0), ψ(t0))}

=
1

∆t
{fx1(a)(φ(t0 +∆t)− φ(t0)) + fx2(a)(ψ(t0 +∆t)− ψ(t0))}+ η(∆t)

= fx1(a)
φ(t0 +∆t)− φ(t0)

∆t
+ fx2(a)

ψ(t0 +∆t)− ψ(t0)

∆t
+ η(∆t),

ここで

|η(∆t)| = |ε(h)|
|∆t|

√
(φ(t0 +∆t)− φ(t0))

2 + (ψ(t0 +∆t)− ψ(t0))
2

= |ε(h)|

√(
φ(t0 +∆t)− φ(t0)

∆t

)2

+

(
ψ(t0 +∆t)− ψ(t0)

∆t

)2

−−−→
∆t→0

0×
√
φ′(t0)

2 + ψ′(t0)
2

= 0.

したがって定理が示せた.
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� �
定理 16 (連鎖律 2). 開集合D ⊂ R2 とする. f : D → R は a ∈ D において全微分
可能とする. さらに u0 ∈ R2 で偏微分可能な関数 φ と ψ に対して Φ = (φ, ψ) とお
き a = Φ(u0), R(Φ) ⊂ D をみたすとする. このとき f ◦ Φ = f(φ, ψ) は u の関数と
して u0 において偏微分可能で

∂(f ◦ Φ)
∂u1

(u0) = fx1(a)
∂φ

∂u1
(u0) + fx2(a)

∂ψ

∂u1
(u0),

∂(f ◦ Φ)
∂u2

(u0) = fx1(a)
∂φ

∂u2
(u0) + fx2(a)

∂ψ

∂u2
(u0)

が成り立つ.� �
証明. 定理 15 の証明と同様である.

定理の要点� �
定理は厳密に述べたが公式としては以下の形で認識しておくと使いやすい. 自分が
どういう計算をしているのか分からなくなったら厳密に述べられた定理に立ち戻る
と良い.

• (定理 15の要点) f = f(x) が全微分可能で x1 = φ(t) と x2 = ψ(t) が微分可能
ならば

df

dt
=

∂f

∂x1

dx1
dt

+
∂f

∂x2

dx2
dt
.

• (定理 16の要点) f = f(x) が全微分可能で x1 = φ(u) と x2 = ψ(u) が偏微分
可能ならば

∂f

∂u1
=

∂f

∂x1

∂x1
∂u1

+
∂f

∂x2

∂x2
∂u1

,

∂f

∂u2
=

∂f

∂x1

∂x1
∂u2

+
∂f

∂x2

∂x2
∂u2

.

� �� �
例 17 (連鎖律 1を使った計算例). f : R2 → R に対して合成関数を

f(x) = sin x1 cos x2, x = (et, e−t)

と定義する. このとき
df

dt
= cos x1 cos x2|x=(et,e−t) · et + sin x1 sin x2|x=(et,e−t) · e−t

= et cos(et) cos(e−t) + e−t sin(et) sin(e−t).� �
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� �
例 18 (連鎖律 2を使った計算例). f : R2 → R に対して合成関数を

f(x) = sin x1 cos x2, x = (u21 − u22, 2u1u2)

と定義する. このとき
∂f

∂u1
= cos x1 cos x2|x=(u21−u22,2u1u2) · 2u1 − sin x1 sin x2|x=(u21−u22,2u1u2) · 2u2

= 2u1 cos(u
2
1 − u22) cos(2u1u2)− 2u2 sin(u

2
1 − u22) sin(2u1u2),

∂f

∂u2
= − cos x1 cos x2|x=(u21−u22,2u1u2) · 2u2 − sin x1 sin x2|x=(u21−u22,2u1u2) · 2u2

= −2u2 cos(u
2
1 − u22) cos(2u1u2)− 2u1 sin(u

2
1 − u22) sin(2u1u2).� �
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第6章 テイラーの定理

1変数関数の微分積分学と前回までの復習� �
• (1変数関数のテイラーの定理) f : [a, b] → R は [a, b] で (n− 1) 回連続微分可
能で (a, b) で n 回微分可能とする. このとき θ ∈ (0, 1) が存在し

f(b) =
n−1∑
l=0

(b− a)l

l!
f (l)(a) +

(b− a)n

n!
f (n)(θa+ (1− θ)b)

が成り立つ.

• 2変数関数 f がC1 級ならば全微分可能である.

• f = f(x) が全微分可能で x1 = φ(t), x2 = ψ(t) が微分可能ならば
df

dt
=

∂f

∂x1

dx1
dt

+
∂f

∂x2

dx2
dt
.

� �
多重指数の記法� �
多重指数の記法を導入しよう. ふたつの自然数の組

α = (α1, α2), α1, α2 ∈ N ∪ {0}

を多重指数という. 多重指数 α ∈ (N ∪ {0})2 について以下の記法を用いる.

• |α| = α1 + α2.

• α! = α1!α2!.

• x ∈ R2 に対して xα = xα1
1 x

α2
2 .

• ∂α = ∂α1
x1
∂α2
x2
.� �
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� �
定理 17 (2変数のテイラーの定理). 領域D ⊂ R2 とする. f : D → R をCn 級とす
る. a ∈ D とする. h ∈ D は t ∈ [0, 1] に対して a + th ∈ D をみたすとする. この
とき 0 < θ < 1 が存在し

f(a+ h) =
n−1∑
|α|=0

hα

α!
(∂αf) (a) +

∑
|α|=n

hα

α!
(∂αf) (a+ θh)

が成り立つ.� �
証明.

g(t) = f(a+ th), t ∈ [0, 1]

とおくと g(0) = f(a), g(1) = f(a + h) であり 1変数関数のテイラーの定理の仮定を満
たす. したがって θ ∈ (0, 1) が存在し

g(1) =
n−1∑
l=0

1

l!
g(l)(0) +

1

n!
g(n)(θ).

次に

g′(t) = h1
∂f

∂x1
(a+ th) + h2

∂f

∂x2
(a+ th)

より一般に

g(l)(t) =

(
h1

∂

∂x1
+ h2

∂

∂x2

)l
f(a+ th)

が成り立つ. これと上の式を組み合わせて

f(a+ h) =
n−1∑
l=0

1

l!

(
h1

∂

∂x1
+ h2

∂

∂x2

)l
f(a) +

1

n!

(
h1

∂

∂x1
+ h2

∂

∂x2

)n
f(a+ θh)

=
n−1∑
|α|=0

hα

α!
(∂αf) (a) +

∑
|α|=n

hα

α!
(∂αf) (a+ θh)

を得る.� �
系 1 (2変数の平均値定理). n = 1 の場合のテイラーの定理は 2変数関数の平均値定
理である.� �
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� �
定理 18 (原点におけるテイラーの定理). 原点の周りの領域 D ⊂ R2 とする. f :

D → R をCn 級とする. x ∈ D とする. このとき 0 < θ < 1 が存在し

f(x) =
n−1∑
|α|=0

xα

α!
(∂αf) (0) +

∑
|α|=n

xα

α!
(∂αf) (θx)

が成り立つ.� �
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� �
例 19. 次の関数

f(x) = ex1 sin x2 (x ∈ R2)

について原点におけるテイラーの定理を n = 3 として考える.

fx1 = ex1 sin x2, fx2 = ex1 cos x2,

fx1x1 = ex1 sin x2, fx1x2 = fx2x1 = ex1 cos x2, fx2x2 = −ex1 sin x2,
fx1x1x1 = ex1 sin x2, fx1x1x2 = fx2x1x1 = fx1x2x1 = ex1 cos x2,

fx2x2x1 = fx2x1x2 = fx1x2x2 = −ex1 sin x2, fx2x2x2 = −ex1 cos x2.

したがって 0 < θ < 1 が存在し

f(x) =
∑
|α|=0

xα

α!
∂αf(0) +

∑
|α|=1

xα

α!
∂αf(0) +

∑
|α|=2

xα

α!
∂αf(0) +

∑
|α|=3

xα

α!
∂αf(0)(θx)

となる. ここで∑|α|=1 などの和は |α| = 1 となる全ての場合を足し合わせるという
意味である. 例えば

G(α) =
xα

α!
∂αf(0)

とおくと ∑
|α|=1

G(α) = G(1, 0) +G(0, 1)

となる. したがって

f(x, y) =
∑
|α|=0

xα

α!
∂αf(0) +

∑
|α|=1

xα

α!
∂αf(0) +

∑
|α|=2

xα

α!
∂αf(0) +

∑
|α|=3

xα

α!
∂αf(0)(θx)

= x2 + x1x2 +
1

6
eθx1x31 sin(θx2) +

1

2
x21x2e

θx1 cos(θx2)

− 1

2
x22x1e

θx1 sin(θx2)−
1

6
x32e

θx1 cos(θx2)

= x2 + x1x2 +
1

6
eθx1

(
(x31 − 3x22x2) sin(θx2)− (x32 − 3x21x2) cos(θx2)

)
.� �
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第7章 極値問題

極大・極小� �
開集合D ⊂ R2 と関数 f : D → R とする. 点 a ∈ D とする. f が a で極大であると
は, ε > 0 が存在し

f(x) < f(a) (x ∈ Bε(a) \ {a})

が成り立つことをいう. 同様に f が a で極小であるとは, ε > 0 が存在し

f(x) > f(a) (x ∈ Bε(a) \ {a})

が成り立つことをいう. 関数が a で極大か極小となるとき a で極値をとるという.

極大となるとき f(a) を極大値, 極小となるとき f(a) を極小値という.� �� �
定理 19 (極値候補点). f : D → R を偏微分可能とする. このとき f が a ∈ D で極
値をとるならば

fx1(a) = fx2(a) = 0

が成り立つ.� �
証明. f は a で極大であるとする. このとき ε > 0 が存在し, 以下を得る

f(a+ he1)− f(a)

h
< 0 (0 < h < ε),

f(a+ he1)− f(a)

h
> 0 (−ε < h < 0).

h→ +0 として

fx1(a) ≤ 0.

h→ −0 として

fx1(a) ≥ 0.

偏微分可能であるから, これらの値は一致しなければならない. したがって fx1(a) = 0

を得る. 同様の議論で fx2(a) = 0 を得る.
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� �
定理 20 (極値判定法). f : D → R をC2級とする. a ∈ D で

fx1(a) = fx2(a) = 0

とする.

D(x) = det
(
fxixj(x)

)
1≤i,j≤2

= det

(
fx1x1(x) fx1x2(x)

fx2x1(x) fx2x2(x)

)
= fx1x1(x)fx2x2(x)− (fx1x2(x))

2

とおくa.

(1) D(a) > 0 かつ fx1x1(a) > 0 ならば f(a) は極小値.

(2) D(a) > 0 かつ fx1x1(a) < 0 ならば f(a) は極大値.

(3) D(a) < 0 ならば f は aで極値をとらない.

a(i, j)成分として aij をもつ 2× 2行列 Aを A = (aij)1≤i,j≤2 とかいた. C2 級なので微分の順序
交換が可能である. すなわち fx1x2

= fx2x1
.� �

証明. (1) テイラーの定理により 0 < θ < 1 が存在し

f(a+ h) = f(a) +
1

2

(
fx1x1(a+ θh)h21 + 2fx1x2(a+ θh)h1h2 + fx2x2(a+ θh)h22

)
が成り立つ.

α(h) = fx1x1(a)h
2
1 + 2fx1x2(a)h1h2 + fx2x2(a)h

2
2 + ε(h),

ε(h) = (fxx(a+ θh)− fx1x1(a))h
2
1 + 2(fx1x2(a+ θh)− fx1x2(a))h1h2

+ (fx2x2(a+ θh)− fx2x2(a))h
2
2

とおく. α(·) の符号が重要となる.

A = fx1x1(a), B = fx1x2(a), C = fx2x2(a)

とおく. このとき h 6= 0 に対して

α(h) = ‖h‖2
(
A

(
h1
‖h‖

)2

+ 2B

(
h1
‖h‖

)(
h2
‖h‖

)
+ C

(
h2
‖h‖

)
+
ε(h)

‖h‖2

)

となる. ここで f がC2 級なので

lim
h→0

ε(h)

‖h‖2
= 0
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であることに注意. 仮定により
B2 − AC = −D(a) < 0

である. したがって連続関数 φ : ∂B1(0) → R を
φ(u) = Au21 + 2Bu1u2 + Cu22 (u ∈ ∂B1(0))

と定義すると φ > 0 となる. ∂B1(0) は閉集合なので
m = min

u∈∂B1(0)
φ(u) > 0

が存在する. lim
h→0

(
ε(h)/‖h‖2

)
= 0 なので δ > 0 が存在し h ∈ Bδ(0) \ {0} ならば

ε(h)

‖h‖2
≤ m

2

となる. したがって h ∈ Bδ(0) \ {0} に対して

α(h) ≥ ‖h‖2
(
m− m

2

)
=

‖h‖2m
2

> 0.

このとき
f(a+ h) = f(a) +

1

2
α(h) > f(a)

なので a で極小となる.

(2) ほとんど同じ議論で fx1x1(a) < 0 ならば極大となる.

(3) D(a) < 0 とする. このときB2 − AC > 0 であるから φ は ∂B1(0) 上で正の値と負
の値の両方を取る.

φ(u1) > 0 (u1 ∈ ∂B1(0)),

φ(u2) < 0 (u2 ∈ ∂B1(0))

とする. このとき δ > 0 が存在し h ∈ Bδ(0) ならば
|ε(h)|
‖h‖2

<
1

2
φ(u1),

|ε(h)|
‖h‖2

< −1

2
φ(u2)

とできる. このとき任意の 0 < ε < δ に対して h1/‖h1‖ = u1 かつ h1 ∈ Bε(0) なるもの
とすれば*1

α(h1) = ‖h1‖2
(
φ

(
h1

‖h1‖

)
+

|ε(h1)|
‖h1‖2

)
>

‖h1‖2

2
φ

(
h1

‖h1‖

)
.

h2/‖h2‖ = u2 かつ h2 ∈ Bε(0) なるものとすれば

α(h2) = ‖h2‖2
(
φ

(
h2

‖h2‖

)
+

|ε(h2)|
‖h2‖2

)
<

‖h2‖2

2
φ

(
h2

‖h2‖

)
.

以上により a は極値であることの定義を満足しない.

*1適当な θ1 ∈ [0, 2π]に対して u1 = p(θ1)なので h1 = rp(θ1), 0 < r < εとすれば良い.
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� �
注意 9. fx1(a) = fx2(a) = 0 でD(a) = 0 の場合は直ちには判定できない. しかし候
補点であることに変わりはないので極値になっているか個別に調べる必要がある.� �� �
例 20. 関数

f(x) = x31 + x32 − 3x1x2 (x ∈ R2)

について考える. この関数の極値を求める. 1階導関数は

fx1(x) = 3x21 − 3x2,

fx2(x) = 3x22 − 3x1

である. 極値の候補は fx1(a) = fx2(a) = 0 となる点 a である. この点を求めるには
方程式

x21 − x2 = 0,

x22 − x1 = 0

を解けばよい. これより a = 0, (1, 1) と求められる. また 2階の導関数は

fx1x1 = 6x1, fx2x2 = 6x2, fx1x2 = fx2x1 = −3.

このとき
D(x) = 36x1x2 − 9

であるから. D(0) = −9 < 0 なので x = (0, 0) では極値をとらない. D(1, 1) =

36− 9 = 27 > 0 である. また fx1xx(1, 1) = 6 > 0 なので x = (1, 1) で極小値

f(1, 1) = −1

をとる.� �
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� �
例 21. 関数

f(x) = x41 + x42 − (x1 + x2)
2 (x ∈ R2)

について考える. fx1 = 4x31 − 2(x1 + x2), fx1x1 = 12x21 − 2, fx1x2 = −2. また x1, x2
に関して対称的なので fx2x2 = 12x22 − 2. 従って

D(x) = 4(6x21 − 1)(6x22 − 1)− 4.

極値候補点 a は fx1(a) = fx2(a) = 0 として

2a31 − (a1 + a2) = 0

2a32 − (a2 + a1) = 0

より

a31 = a32

を得る. これより a1 = a2. これより

a31 − a1 = 0

なので a = 0, ±(1, 1) が極値候補点である. このとき

D(1, 1) = D(−1,−1) = 100− 4 = 96 > 0,

D(0) = 0.

また fx1x1(±(1, 1)) > 0 であるから±(1, 1) で極小値−2 をとる. また x = 0は極値
でない. 実際, 原点の適当な近傍で |y| < 1 なので

f(0, x2) = x42 − x22

= x22(x
2
2 − 1)

< 0 = f(0).

一方任意の x1 ∈ R に対して

f(x1,−x1) = 2x41 > 0 = f(0)

したがって原点の近傍で f(0)より大きな値と小さな値のどちらの値も取り得るので
極値でない.� �
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� �
例 22. 関数

f(x) = 2x21 + x22 sin(2x1) (−π < x1 < π, x2 ∈ R)

について考える.fx1 = 4x1+2x22 cos(2x1), fx1x1 = 4−4x22 sin(2x1), fx2 = 2x2 sin(2x1),

fx2x2 = 2 sin(2x1), fx1x2 = 4x2 cos(2x1). 極値候補点は a = 0 と a1 = ±π/2, a2 6= 0

となる点 a である. このとき fx2x2(±π/2, a2) = 0 なのでD (±π/2, a2) < 0 だから
f(±π/2, a2) は極値でないことがわかる.

D(0) = 0

である. したがってこのままでは判定できないが sin が奇関数であることから 0 で
極値を取らないことがわかる. 実際, x = 0 のある近傍で x1 > 0 のときは

f(x) > 0 = f(0).

一方

lim
θ→0

sin θ

θ
= 1

なので ε = 1/2 に対して δ > 0 が存在し |θ| < δ なる θ ∈ R に対して∣∣∣∣sin θθ − 1

∣∣∣∣ < 1/2

が成り立つ. とくに
sin θ

θ
>

1

2

が成り立っている. このとき任意の 0 < η < δ に対して x0 = (−η/2,√η) とすると

f (x0) = −η
(
−η
2
+ η

sin η

η

)
= −η2

(
−1

2
+

sin η

η

)
< 0 = f(0).

したがって原点の近傍において f(0)より大きい値と小さい値のどちらの値も取り得
るので極値でない.� �
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第8章 リーマン積分 I

記法� �
a = (a1, a2),b = (b1, b2) ∈ R2 に対して

[a,b] = [a1, b1]× [a2, b2]

とかく. R2 の長方形A ⊂ R2 の面積を |A| とかく.� �
D = [a,b]におけるリーマン積分の定義
D = [a,b] とする. f : D → R は有界な関数であるとして f のD 上の積分を考える.

分割� �
D の分割∆ とは x1-軸方向の分点

a1 = x1,0 < x1,1 < · · · < x1,m = b1

と x2-軸方向の分点

a2 = x2,0 < x2,1 < · · · < x2,n = b2

をとってD を

∆ij = [xi−1, xi]× [yj−1, yj]

という各辺がそれぞれ x1-軸と x2-軸に平行なm × n 個の長方形に分割することで
ある.� �
分割の大きさ� �
分割の大きさ ‖∆‖ を

‖∆‖ = max
1≤i≤m,1≤j≤n

(x1,i − x1,i−1, x2,j − x2,j−1)

で定義する.� �
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分割の細分� �
D のふたつの分割∆1,∆2 とする. ∆1 の分点の集合が∆2 の分点の集合に含まれる
とき∆2 は∆1 の細分であるといい

∆1 ⊂ ∆2

と表す.� �
過剰和, 不足和� �
f の過剰和 S∆, 不足和 s∆ をそれぞれ

S∆ =
m∑
i=1

n∑
j=1

Mij|∆ij|, Mij = sup
x∈∆ij

f(x),

s∆ =
m∑
i=1

n∑
j=1

mij|∆ij|, mij = inf
x∈∆ij

f(x)

と定義する.� �� �
定理 21. S∆, s∆ は次の性質をみたす.

(1)

l |[a,b]| ≤ s∆ ≤ S∆ ≤ L |[a,b]| .

ここで, l = inf
x∈[a,b]

f(x), L = sup
x∈[a,b]

f(x).

(2) ふたつの分割について∆1 ⊂ ∆2 ならば

s∆1 ≤ s∆2 ≤ S∆2 ≤ S∆1 .

(2) 任意のふたつの分割∆1,∆2 について

s∆1 ≤ S∆2 , s∆2 ≤ S∆1 .� �
証明. (1)

l |[a,b]| = l

m∑
i=1

n∑
j=1

|∆ij| =
m∑
i=1

n∑
j=1

l|∆ij|

≤
m∑
i=1

n∑
j=1

mij|∆ij|

= s∆ ≤ S∆ ≤ L |[a,b]| .
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(2) 分割
∆1 : ∆1,ij (1 ≤ i ≤ m, 1 ≤ j ≤ n)

によって生じる (mn) 個の小長方形を□k (1 ≤ k ≤ mn) とする*1. 分割をその小
長方形によって

∆1 : □1,□2, . . . ,□mn

と表すことにする. 簡単のため分割∆1 で 1 番目の小長方形を

□1 = □1,1 ∪□1,2

とふたつに分割したものが∆2 であるとする. すなわち

∆2 : □1,1,□1,2,□2, . . . ,□mn

という (mn+ 1) 個の小長方形となる. このとき次を得る

s∆1 =
mn∑
k=1

inf
x∈□k

f(x)|□k|

= inf
x∈□1

f(x)(|□1,1|+ |□1,2|) +
mn∑
k=2

inf
x∈□k

f(x)|□k|

= inf
x∈□1

f(x)|□1,1|+ inf
x∈□1

f(x)|□1,2|+
mn∑
k=2

inf
x∈□k

f(x)|□k|

≤ inf
x∈□1,1

f(x)|□1,1|+ inf
x∈□1,2

f(x)|□1,2|+
mn∑
k=2

inf
x∈□k

f(x)|□k|

= s∆2

≤ S∆2

= sup
x∈□1,1

f(x)|□1,1|+ sup
x∈□1,2

f(x)|□1,2|+
mn∑
k=2

sup
x∈□k

f(x)|□k|

≤ sup
x∈□1

f(x)|□1,1|+ sup
x∈□1

f(x)|□1,2|+
mn∑
k=2

sup
x∈□k

f(x)|□k|

= sup
x∈□1

f(x)(|□1,1|+ |□1,2|) +
mn∑
k=2

sup
x∈□k

f(x)|□k|

= S∆1 .

一般の場合も小長方形が分割されるだけなので上の議論を繰り返せば良いことが
わかる.

*1異なる i, j に対応する小長方形は異なる小長方形として扱う.
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(3) 分割∆1 の分点に∆2 の分点を加えた分割を∆3 とかく. このとき∆k ⊂ ∆3 (k =

1, 2) をみたす. したがって (2) により

s∆1 ≤ s∆3 ≤ S∆3 ≤ S∆2 .

同様に

s∆2 ≤ s∆3 ≤ S∆3 ≤ S∆1 .

上積分, 下積分� �
D = [a,b] とする. P をD のあらゆる分割の集まりとする. 上積分, 下積分をそれ
ぞれ ∫

D

f(x)dx = inf
∆∈P

S∆,

∫
D

f(x)dx = sup
∆∈P

s∆

と定義する.� �
リーマン積分� �
D = [a,b] とする. 有界な関数 f : D → R に対して∫

D

f(x)dx =

∫
D

f(x)dx

が成り立つとき f はリーマン積分可能であるといい∫
D

f(x)dx =

∫
D

f(x)dx

(
=

∫
D

f(x)dx

)

をリーマン積分という.� �� �
注意 10. 計算を実行する際には∫

D

f(x)dx =

∫∫
D

f(x1, x2)dx1dx2

とかくことがある. 右辺の様に表す場合は重積分と呼ぶことが多い. 重積分として
表示してから x1-変数または x2-変数から積分を計算することがある.� �
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� �
定理 22 (ダルブーの定理). D = [a,b] とする. f : I → R とする. このとき

lim
∥∆∥→0

S∆ =

∫
D

f(x)dx, lim
∥∆∥→0

s∆ =

∫
D

f(x)dx

が成り立つ.� �
証明.

lim
∥∆∥→0

S∆ =

∫
D

f(x)dx

のみ示す. もう一方も同様である.∫
D

f(x)dx = inf
∆∈P

S∆

なので任意の ε > 0 に対して分割

∆1 : ∆1,ij (1 ≤ i ≤ p, 1 ≤ j ≤ q)

が存在し ∫
D

f(x)dx ≤ S∆1 <

∫
D

f(x)dx+
ε

2

が成り立つ. 分割
∆ : ∆ij (1 ≤ i ≤ m, 1 ≤ j ≤ n)

とすると
0 < δ1 < min

1≤i≤p,1≤j≤q
(x1,i − x1,i−1, x2,j − x2,j−1)

に対し ‖∆‖ < δ1 のとき∆ の分割における x1-軸方向, x2-軸方向, それぞれの分割からな
る区間には∆1 のそれぞれの軸における分割の分点を高々ひとつずつしか含まない. ∆

に∆1 の分点を加えた分割を∆2 とする. ∆2 において∆ の小長方形∆kl が∆1 の分点
(x∗1, x

∗
2) を含むとき

Mk,l = sup
x∈[x1,k−1,x1,k]×[x2,l−1,x2,l]

f(x)

および

M
(1)
k,l = sup

x∈[x1,k−1,x
∗
1]×[x2,l−1,x

∗
2]

f(x), M
(2)
k,l = sup

x∈[x1,k−1,x
∗
1]×[x∗2,x2,l]

f(x)

M
(3)
k,l = sup

x∈[x∗1,x2,k]×[x2,l−1,x
∗
2]

f(x), M
(4)
k,l = sup

x∈[x∗1,x2,k]×[x∗2,x2,l]

f(x)
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とおく. このとき

Mk,l|∆kl| −
(
M

(1)
k,l |[x1,k−1, x

∗
1]× [x2,l−1, x

∗
2]|+M

(2)
k,l |[x1,k−1, x

∗
1]× [x∗2, x2,l]|

+M
(3)
k,l |[x

∗
1, x2,k]× [x2,l−1, x

∗
2]|+M

(4)
k,l |[x

∗
1, x2,k]× [x∗2, x2,l]|

)
= (Mk,l −M

(1)
k,l ) |[x1,k−1, x

∗
1]× [x2,l−1, x

∗
2]|+ (Mk,l −M

(2)
k,l ) |[x1,k−1, x

∗
1]× [x∗2, x2,l]|

+ (Mk,l −M
(3)
k,l ) |[x

∗
1, x2,k]× [x2,l−1, x

∗
2]|+ (Mk,l −M

(4)
k,l ) |[x

∗
1, x2,k]× [x∗2, x2,l]|

≤ (L− l)|∆kl|
≤ L‖∆‖2.

したがって, 分割∆1 は固定されていて∆ に含まれる∆1 の分点の個数も有限個であり,

S∆ − S∆2 の誤差を評価するにあたり, 上の様な評価が必要な項は∆1 の分点を含む∆kl

に伴う項である. そのような項の個数は∆1 の分点の個数に依存して決まる有限個であ
るから, ある定数Cp,q > 0 に対して

S∆ − S∆2 ≤ Cp,qL‖∆‖2

と評価される. したがって
δ2 =

√
ε

2Cp,qL

に対して δ = min(δ1, δ2) とおくと ‖∆‖ < δ ならば

S∆ − S∆2 <
ε

2

が成り立つ. したがって ‖∆‖ < δ に対して

0 ≤ S∆ −
∫
D

f(x)dx = S∆ − S∆2 + S∆1 −
∫
D

f(x)dx− (S∆1 − S∆2)

≤ S∆ − S∆2 + S∆1 −
∫
D

f(x)dx

< ε.

以上により
lim

∥∆∥→0
S∆ =

∫
D

f(x)dx.
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リーマン和� �
分割∆ ∈ P に対して

R (∆; c̃) =
m∑
i=1

n∑
j=1

f(cij)|∆ij| (cij ∈ ∆ij)

を f のリーマン和という. c̃ = (cij)1≤i≤m,1≤j≤n は分割∆ の任意の点である.� �� �
定理 23 (積分可能であることの必要十分条件). D = [a,b] とする. f : D → R が積
分可能, すなわち

I =

∫
D

f(x)dx =

∫
D

f(x)dx

であることの必要十分条件は, 任意の ε > 0 に対して δ = δ(ε) > 0 が存在し分割
∆ ∈ P が ‖∆‖ < δ をみたすならば

|R (∆; c̃)− I| < ε

が任意の c̃ ∈ ∆ に対して成り立つことである. この意味での収束を

lim
∥∆∥→0

R (∆; c̃) = I (∀c̃ ∈ ∆)

とかくことがある.� �
証明. （必要性）任意の ε > 0 とする. ダルブーの定理により δ1 = δ1(ε) > 0 が存在し
て, 分割∆ ∈ P が ‖∆‖ < δ1 をみたすならば

I − ε < S∆ < I + ε

が成り立つ. 同様に δ2 = δ2(ε) > 0 が存在し分割∆ ∈ P が ‖∆‖ < δ1 をみたすならば
I − ε < s∆ < I + ε

が成り立つ. δ = min(δ1, δ2) とおくと, ‖∆‖ < δ ならば
I − ε < s∆ ≤ R (∆; c̃) ≤ S∆ < I + ε
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が任意の c̃ ∈ ∆ に対して成り立つ.

（十分性）ε > 0 に対して δ1 = δ1(ε) > 0 が存在し分割∆ ∈ P が ‖∆‖ < δ1 をみたすな
らば

|R (∆; c̃)− I| < ε

2

が任意の c̃ ∈ ∆ に対して成り立つとする. このとき

R (∆; c̃) ≤ S∆

である. また任意の η > 0 に対して z̃ = (zij) ∈ ∆ が存在し

f(zij) +
η

|D|
> Mij

が成り立つ. したがって

R (∆; z̃) + η > S∆.

このことは

sup
c̃∈∆

R (∆; c̃) = S∆

を意味する. 同様に

inf
c̃∈∆

R (∆; c̃) = s∆

を得る. 以上により

−ε
2
≤ S∆ − I <

ε

2
, −ε

2
≤ I − s∆ ≤ ε

2

を得る*1. したがって ‖∆‖ < δ1 ならば

−ε < S∆ − s∆ < ε

が成り立つ. 以上により

0 ≤
∫
D

f(x)dx−
∫
D

f(x)dx ≤ S∆ − s∆ ≤ ε

を得るので f は積分可能となり積分を∫
D

f(x)dx =

∫
D

f(x)dx

*1Ω = {R(∆; c); c ∈ ∆}とおくと I + ε/2は Ωの上界のひとつである. したがって S∆ ≤ I + ε/2.
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と定義できる. まだ積分の値がリーマン和の極限 I と一致することは証明できていない.

そのことを示そう. ダルブーの定理により δ2 = δ2(ε) > 0 が存在し ‖∆‖ < δ2 ならば∣∣∣∣S∆ −
∫
D

f(x)dx

∣∣∣∣ < ε

2
.

δ = min(δ1, δ2) とおくと ‖∆‖ < δ ならば∣∣∣∣I − ∫
D

f(x)dx

∣∣∣∣ = ∣∣∣∣I − S∆ + S∆ −
∫
D

f(x)dx

∣∣∣∣
< |I − S∆|+

∣∣∣∣S∆ −
∫
D

f(x)dx

∣∣∣∣
< ε.

以上により示された.� �
定理 24. D = [a,b] とする. 連続関数 f : D → R はD の上で積分可能である.� �
証明. D は有界閉集合なので f はD 上一様連続である. したがって任意の ε > 0 に対
して δ = δ(ε) > 0 が存在し分割∆ ∈ P が ‖∆‖ < δ をみたすならば任意の x,y ∈ ∆ij に
対して

0 ≤Mij −mij ≤ max
x∈∆ij

f(x)− min
x∈∆ij

f(x) <
ε

|D|

が成り立つ. したがって

0 ≤ S∆ − s∆ =
m∑
i=1

n∑
j=1

(Mij −mij)|∆ij|

<
m∑
i=1

n∑
j=1

ε

|∆|
|∆ij|

= ε

なので

0 ≤
∫
D

f(x)dx−
∫
D

f(x)dx ≤ S∆ − s∆ < ε.

以上により積分可能である.
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� �
定理 25. D = [a,b] とする. 連続関数 f : D → R, g : D → R とする. このとき

(1) ∫
D

(c1f(x) + c2g(x)) dx = c1

∫
D

f(x)dx+ c2

∫
D

g(x)dx (c1, c2 ∈ R)

(2) D1 = [a,b], D2 = [c,d] とする. D = D1 ∪D2 に対して∫
D

f(x)dx =

∫
D1

f(x)dx+

∫
D2

f(x)dx.

(3) f ≤ g ならば ∫
D

f(x)dx ≤
∫
D

g(x)dx.

(4) |f | が積分可能ならばa ∣∣∣∣∫
D

f(x)dx

∣∣∣∣ ≤ ∫
D

|f(x)| dx.

a実は f が積分可能ならば |f |も積分可能である. 適当な文献にはそのことの説明が述べられてい
る.� �
証明. 1 変数関数のリーマン積分の場合と同様である.

一般の集合D ⊂ R2におけるリーマン積分の定義
ここまで積分は長方形D = [a,b] に対して定義した.

一般の集合上のリーマン積分� �
一般の有界集合D ⊂ R2 とする. D̃ = [a,b] をD ⊂ D̃ なるものとする.

f̃(x) =

{
f(x) (x ∈ D)

0 (x ∈ D̃ \D)

と定義して f̃ が D̃ で積分可能なとき f はD 上で積分可能といい∫
D

f(x)dx =

∫
D̃

f̃(x)dx

と定義する.� �
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D ⊂ R2の面積� �
D ⊂ R2 が面積確定であるとは D̃ = [a,b] をD ⊂ D̃ なるものとして

χD(x) =

{
1 (x ∈ D)

0 (x 6∈ D)

が D̃ 上で積分可能なことをいう. このときD の面積 |D| を

|D| =
∫
D̃

χD(x)dx

と定義する.� �
面積 0� �
部分集合 A ⊂ R2 が面積 0 であるとは, 任意の ε > 0 に対して有限個の長方形
Rj = [aj,bj], j = 1, 2, · · · ,m が存在し

A ⊂
m⋃
j=1

Rj,
m∑
j=1

|Rj| < ε

が成り立つことをいう. ここで |Rj| = (bj,1 − aj,1)(bj,2 − aj,2).� �
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� �
例 23. 区間 I = [a, b] ⊂ R とする. 連続関数 φ : I → R のグラフ

Gφ =
{
x ∈ R2; x1 ∈ I, x2 = φ(x1)

}
は面積 0 である. 実際, φ : I → R は一様連続なので ε > 0 に対して δ = δ(ε) > 0

が存在し |x1 − x′1| < δ なる任意の x1, x
′
1 ∈ I に対して

|φ(x1)− φ(x′1)| < ε/(b− a)

が成り立つ. I = [a, b] の分割

a = x1,0 < x1,1 < · · · < x1,m = b

の幅を δ > 0 より小さくとる.

Mj = max
x1∈[x1,j−1,x1,j ]

φ(x1), mj = min
x1∈[xj−1,xj ]

φ(x1),

Rj = [x1,j−1, x1,j]× [mj,Mj]

とおく. このときMj −mj < ε/(b− a) なので

|Rj| = (x1,j − x1,j−1)(Mj −mj) < (x1,j − x1,j−1)
ε

b− a
,

m∑
j=1

|Rj| < ε.

またGφ ⊂
⋃m
j=1Rj. したがってGφ の面積は 0.� �

広義分割による積分の定義
これまでは長方形分割で積分を定義していた. 必要に応じてもっと一般の分割を考え
る場合がある. 広義分割と呼ばれるものである.



61

広義分割� �
D = [a,b] とする. ∆ = {δj}lj=1 ⊂ D が広義分割であるとは δj (1 ≤ j ≤ l) は面積確
定な部分集合で

D =
l⋃

j=1

δj, (δj)
i ∩ (δk)

i = ∅ (j 6= k)

をみたすことをいう. ここで (δj)
i は δj の内部である. また

‖∆‖ = max
1≤j≤l

(diamδj)

と定義する. ここで, 部分集合A ⊂ R2 の直径

diamA = sup
x,y∈A

‖x− y‖.

長方形分割はひとつの広義分割である. 内部の共通部分が空集合であるという要請
は面積の重複を避けるためである.� �
記法� �
D = [a,b] の長方形分割全体をP とかく. 広義分割全体を G とかく.� �
過剰和と不足和� �
D = [a,b] とする. ∆ = {δj}lj=1 ∈ G に対して f の過剰和と不足和をそれぞれ

S̃∆ =
l∑

j=1

Mj|δj|, Mj = sup
x∈δj

f(x),

s̃∆ =
l∑

j=1

mj|δj|, mj = sup
x∈δj

f(x)

と定義する.� �
小長方形の場合と同様の議論で次の定理を得る.
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� �
定理 26. S̃∆, s̃∆ は次の性質をみたす.

(1)

s̃∆ ≤ S̃∆.

(2) ふたつの広義分割について∆1 ⊂ ∆2 ならば

s̃∆1 ≤ s̃∆2 ≤ S̃∆2 ≤ S̃∆1 .

(3) 任意のふたつの広義分割∆1,∆2 について

s̃∆1 ≤ S̃∆2 , s̃∆2 ≤ S̃∆1 .

ここで∆1 ⊂ ∆2 は∆1 の小領域 δj をさらに細かく分割したものが∆2 である.� �
広義分割 G において

sup
∆∈G

s̃∆ = inf
∆∈G

S̃∆

が成り立つとき積分可能（G）であるということにする. またこのとき

(G)
∫
D

f(x)dx = sup
∆∈G

s̃∆

と定義する. これと区別して長方形分割において積分可能であることを積分可能（P）
とかき, 積分を

(P)

∫
D

f(x)dx

とかく.� �
定理 27. 積分可能（P）と積分可能（G) は同値である. また

(P)

∫
D

f(x)dx = (G)
∫
D

f(x)dx

が成り立つ.� �
証明. 長方形分割は広義分割の一例であるから∫

D

f(x)dx = sup
∆∈P

s∆ ≤ sup
∆∈G

s̃∆ ≤ inf
∆∈G

S̃∆ ≤ inf
∆∈P

S∆ =

∫
D

f(x)dx.

すなわち f が積分可能（P）であれば∫
D

f(x)dx =

∫
D

f(x)dx
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なので
sup
∆∈G

s̃∆ = inf
∆∈G

S̃∆ = (P)

∫
D

f(x)dx

が従う. すなわち積分可能（P）ならば積分可能（G）であり

(P)

∫
D

f(x)dx = (G)
∫
D

f(x)dx.

次にこの逆を考えよう. つまり, f は積分可能（G）であるとする. すなわち

sup
∆∈G

s̃∆ = inf
∆∈G

S̃∆

である. このとき,

lim
∥∆∥→0

S̃∆ = inf
∆′∈G

S̃∆′ , lim
∥∆∥→0

s̃∆ = sup
∆′∈G

s̃∆′

がいえる. これについて

lim
∥∆∥→0

S̃∆ = inf
∆′∈G

S̃∆′

のみ示す. 任意の η0 > 0 とする. ‖∆‖ < η0 のとき

S̃∆ ≥ inf
∆′∈G

S̃∆′

である. したがって
lim inf
∥∆∥→0

S̃∆ ≥ inf
∆′∈G

S̃∆′ .

任意の ε > 0 とする. このとき, 分割

∆1 = {δ1,i}1≤i≤m

が存在し

inf
∆′∈G

S̃∆′ ≤ S̃∆1 < inf
∆′∈G

S̃∆′ +
ε

2

が成り立つ. γ > 0 とする. 1 ≤ i ≤ m に対して δ1,i を辺の長さの最大が γ 未満の有限
個の長方形で被覆することができる*2. すなわち, 長方形の分割∆i = {Ii,k}pk=1

δ1,i ⊂
p⋃

k=1

Ii,k

で ‖∆i‖ < γ をみたすものが存在する. このとき, 適当な γ > 0 に対して∆1 を被覆する
長方形の分割∆2 = {∆i}mi=1 に対して

S̃∆2 ≤ inf
∆′∈G

S̃∆′ + ε.

*2位相空間論（または距離空間論）
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さらに η1 > 0 が存在して, ∆ ∈ G が ‖∆‖ < η1 をみたすとき

S̃∆ ≤ S̃∆2 ≤ inf
∆′∈G

S̃∆′ + ε.

したがって
lim sup
∥∆∥→0

S̃∆ ≤ inf
∆′∈G

S̃∆′ + ε

だから
inf
∆′∈G

S̃∆′ ≤ lim inf
∥∆∥→0

S̃∆ ≤ lim sup
∥∆∥→0

S̃∆ ≤ inf
∆′∈G

S̃∆′ + ε

なので ε > 0 の任意性により

lim
∥∆∥→0

S̃∆ = inf
∆′∈G

S̃∆′ .

以上により
lim

∥∆∥→0

(
S̃∆ − s̃∆

)
= 0.

これより, 分割P に伴うダルブー和について

lim
∥∆∥→0

(S∆ − s∆) = 0

がいえるので f は積分可能（P）であることがいえる. よって, はじめの議論に戻れば

(G)
∫
D

f(x)dx = sup
∆∈G

s̃∆ = inf
∆∈G

S̃∆ = (P)

∫
D

f(x)dx

となる.
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� �
定理 28. D = [a,b] とする. f : D → R はD で積分可能とする. 任意のx2 ∈ [a2, b2]

に対して f(·, x2) が [a1, b1] で積分可能であれば∫ b1

a1

f(x1, ·)dx1

は [a2, b2] で積分可能で∫
D

f(x)dx =

∫ b2

a2

(∫ b1

a1

f(x1, x2)dx1

)
dx2

が成り立つ.� �
証明. 長方形分割

∆ : a1 = x1,0 < x1,2 < · · · < x1,m = b1, a2 = x2,0 < x2,1 < · · · < x2,n = b2

とする. また x1-方向の分割を∆1, x2-方向の分割を∆2 とする. f の不足和

sf,∆ =
m∑
i=1

n∑
j=1

mij(x1,i − x1,i−1)(x2,j − x2,j−1)

=
n∑
j=1

(
m∑
i=1

mij(x1,i − x1,i−1)

)
(x2,j − x2,j−1)

を考える. f(·, x2) は積分可能なので
m∑
i=1

mij(x1,i − x1,i−1) ≤
∫ b1

a1

f(x1, x2)dx1 =

∫ b1

a1

f(x1, x2)dx1 (x2 ∈ [x2,j−1, x2,j])

を得る. 下限をとって
m∑
i=1

mij(x1,i − x1,i−1) ≤ inf
x2∈[x2,j−1,x2,j ]

∫ b1

a1

f(x1, x2)dx1
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を得る. したがって

sf,∆ ≤
n∑
j=1

inf
x2∈[x2,j−1,x2,j ]

(∫ b1

a1

f(x1, x2)dx1

)
(x2,j − x2,j−1)

= s∫ b1
a1
f(x1,·)dx1,∆2

≤
∫ b2

a2

(∫ b1

a1

f(x1, x2)dx1

)
dx2.

上式の∆ ∈ P に関する上限をとって∫
D

f(x)dx ≤
∫ b2

a2

(∫ b1

a1

f(x1, x2)dx1

)
dx2.

同じ様な議論を過剰和に対して行うと∫
D

f(x)dx ≥
∫ b2

a2

(∫ b1

a1

f(x1, x2)dx1

)
dx2

が得られる. 得られたふたつの不等式を合わせて, また f が積分可能なことにより∫
D

f(x)dx ≤
∫ b2

a2

(∫ b1

a1

f(x1, x2)dx1

)
dx2 ≤

∫ b2

a2

(∫ b1

a1

f(x1, x2)dx1

)
dx2

≤
∫
D

f(x)dx.

以上により∫
D

f(x)dx =

∫ b2

a2

(∫ b1

a1

f(x1, x2)dx1

)
dx2 =

∫ b2

a2

(∫ b1

a1

f(x1, x2)dx1

)
dx2

となるので ∫ b1
a1
f(x1, ·)dx1 は積分可能で所望の等式を得る.

� �
定理 29. D = [a,b] とする. ふたつの関数 g : [a1, b1] → R, h : [a2, b2] → R は積分
可能で

f(x) = g(x1)h(x2) (x ∈ D)

と表されるとする. このとき∫
D

f(x)dx =

∫ b1

a1

g(x1)dx1

∫ b2

a2

h(x2)dx2

が成り立つ.� �
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証明. まず g, h > 0 と仮定して証明する. 長方形分割

∆ : a1 = x1,0 < x1,2 < · · · < x1,m = b1, a2 = x2,0 < x2,1 < · · · < x2,n = b2

とする. また x1-方向の分割を∆1, x2-方向の分割を∆2 とする. g, h > 0 なので

inf
x∈[x1,i−1,x1,i]×[x2,j−1,x2,j ]

g(x1)h(x2) =

(
inf

x1∈[x1,i−1,x1,i]
g(x1)

)(
inf

x2∈[x2,j−1,x2,j ]
h(x2)

)
と

sup
x∈[x1,i−1,x1,i]×[x2,j−1,x2,j ]

g(x1)h(x2) =

(
sup

x1∈[x1,i−1,x1,i]

g(x1)

)(
sup

x2∈[x2,j−1,x2,j ]

h(x2)

)
.

これより f = gh のダルブー和は g と h のダルブー和の積になる. すなわち

sf,∆ = sg,∆1sh,∆2 ,

Sf,∆ = Sg,∆1Sh,∆2 .

これより

sg,∆1sh,∆2 = sf,∆ ≤
∫
D

f(x)dx,

Sg,∆1Sh,∆2 = Sf,∆ ≥
∫
D

f(x)dx.

この評価は分割∆1,∆2 に対して一様である. したがって上式のそれぞれの分割につい
て上限または下限をとると, g, h が積分可能であるから, g, h の上積分, 下積分は積分に
一致し ∫ b1

a1

g(x1)dx1

∫ b2

a2

h(x2)dx2 ≤
∫
D

f(x)dx,∫ b1

a1

g(x1)dx1

∫ b2

a2

h(x2)dx2 ≥
∫
D

f(x)dx

を得る. 以上により ∫
D

f(x)dx ≤
∫
D

f(x)dx.

定義により ∫
D

f(x)dx ≥
∫
D

f(x)dx

だから ∫
D

f(x)dx =

∫
D

f(x)dx
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を得る. したがって積分可能で∫
D

f(x)dx =

∫ b1

a1

g(x1)dx1

∫ b2

a2

h(x2)dx2.

g, h > 0 でない場合でも有界なのでA,B > 0 を適当に選んで g + A > 0, h + B > 0 と
できる. これに対して∫

D

(g(x1) + A)(h(x2) + B)dx

=

∫ b1

a1

(g(x1) + A)dx1

∫ b2

a2

(h(x2) + B)dx2

=

(∫ b1

a1

g(x1)dx1 + A(b1 − a1)

)(∫ b2

a2

h(x2)dx2 +B(b2 − a2)

)
=

∫ b1

a1

g(x1)dx1

∫ b2

a2

h(x2)dx2 + A(b1 − a1)

∫ b2

a2

h(x2)dx2

+B(b2 − a2)

∫ b1

a1

g(x1)dx1 + AB|D|.

一方, 定理 28を用いると∫
D

(g(x1) + A)(h(x2) + B)dx

=

∫
D

f(x)dx+ A

∫
D

h(x2)dx+B

∫
D

g(x1)dx+ AB|D|

=

∫
D

f(x)dx+ A(b1 − a1)

∫ b2

a2

h(x2)dx2

+B(b2 − a2)

∫ b1

a1

g(x1)dx1 + AB|D|

と計算できる. これらは等しいので所望の等式を得る.� �
例 24. D = [0, 1]× [0, 1] とする. 関数

f(x) = x1x2 (x ∈ D)

の積分を求めてみよう. ∫
D

f(x)dx =

∫ 1

0

x2dx2

∫ 1

0

x1dx1

=

(∫ 1

0

x1dx1

)2

=
1

4
.� �



69

� �
例 25. D = [0, 1]× [0, 1] とする. 関数

f(x) =
1

x1 + x2 + 1
(x ∈ D)

の積分を求めてみよう.∫
D

f(x)dx =

∫ 1

0

(∫ 1

0

1

x1 + x2 + 1
dx1

)
dx2

=

∫ 1

0

(
[log(x1 + x2 + 1)]x1=1

x1=0

)
dx2

=

∫ 1

0

(log(x2 + 2)− log(x2 + 1)) dx2

= [(x2 + 2) log(x2 + 2)− (x2 + 2)− (x2 + 1) log(x2 + 1) + x2 + 1]10

= [(x2 + 2) log(x2 + 2)− (x2 + 1) log(x2 + 1)− 1]10

= 3 log 3− 2 log 2− 1− 2 log 2 + 1

= 3 log 3− 4 log 2.� �� �
例 26. D = [0, 1]× [0, π/2] とする. 関数

f(x) = ex1 sin x2 (x ∈ D)

の積分を求めてみよう.∫
D

f(x)dx =

∫ 1

0

ex1dx1

∫ π/2

0

sin x2dx2

= e− 1.� �
累次積分は逐次積分と呼ばれることもある.
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� �
定理 30 (累次積分 1). ふたつの連続関数 φ1 : [a1, b1] → R, φ2 : [a1, b1] → R は

φ1(x1) < φ2(x1) (x1 ∈ [a1, b1])

をみたすとする. 閉集合

D =
{
x ∈ R2; a1 ≤ x1 ≤ b1, φ1(x1) ≤ x2 ≤ φ2(x1)

}
を考える. このとき連続関数 f : D → R に対して∫

D

f(x)dx =

∫ b1

a1

(∫ φ2(x1)

φ1(x1)

f(x1, x2)dx2

)
dx1

が成り立つ.� �
証明. φ1, φ2 は有界区間上の連続関数なので値域が有界であるから

D ⊂ [a,b] = [a1, b1]× [a2, b2]

とできる. このとき [a,b] に f を拡張した関数を

f̃(x) =

{
f(x) (x ∈ D)

0 (x ∈ [a,b] \D)

とすると, 任意の x1 ∈ [a1, b1] に対して∫ b2

a2

f̃(x1, x2)dx2 =

∫ φ2(x1)

φ1(x1)

f(x1, x2)dx2

であるから, 定理 28 で x1 と x2 の役割を入れかえても成り立つので∫
D

f(x)dx =

∫
[a,b]

f̃(x)dx

=

∫ b1

a1

(∫ b2

a2

f̃(x1, x2)dx2

)
dx1

=

∫ b1

a1

(∫ φ2(x1)

φ1(x1)

f(x1, x2)dx2

)
dx1.
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� �
定理 31 (累次積分 2). ふたつの連続関数 ψ1 : [a2, b2] → R, ψ2 : [a2, b2] → R は

ψ1(x2) < ψ2(x2) (x2 ∈ [a2, b2])

をみたすとする. 閉集合

D =
{
x ∈ R2; a2 ≤ x2 ≤ b2, ψ1(x2) ≤ x1 ≤ ψ2(x2)

}
を考える. このとき連続関数 f : D → R に対して∫

D

f(x)dx =

∫ b2

a2

(∫ ψ2(x2)

ψ1(x2)

f(x1, x2)dx1

)
dx2

が成り立つ.� �
証明. 前の定理と同様である.� �
注意 11. 定理 30 ではD が縦方向を関数 φ1, φ2 で挟まれている状況であるが定理
31 ではDは横方向を関数 ψ1, ψ2 で挟まれている.� �
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� �
例 27 (定理 30を用いた計算法).

D =
{
x ∈ R2; x1 ≥ 2, x2 ≤ x1, x2 ≥ x21/4

}
として関数

f(x) =
x1

‖x‖2
(x ∈ D)

の積分を求める. これは 2 ≤ x1 ≤ 4, φ1(x1) = x21/4, φ2(x1) = x1 の場合である.∫
D

f(x)dx =

∫ 4

2

∫ x1

x21/4

x1
x21 + x22

dx2dx1

=

∫ 4

2

[
tan−1 x2

x1

]x1
x21/4

dx1

=

∫ 4

2

[
tan−1 1− tan−1 x1

4

]
dx1

=

∫ 4

2

[π
4
− tan−1 x1

4

]
dx1

=
[πx1

4

]4
2
−
[
x1 tan

−1 x1
4

]4
2
+

∫ 4

2

x1/4

1 + (x1/4)2
dx1

=
π

2
− 4 tan−1 1 + 2 tan−1(1/2) +

[
2 log(16 + x2)

]4
2

= 2 tan−1(1/2)− π/2 + 2 log(8/5).� �� �
例 28 (定理 31を用いた計算法).

D =
{
x ∈ R2; x1 + x22 ≤ 4, x2 ≤ x1 − 2

}
として関数

f(x) = x21x2 (x ∈ D)

の積分を求める. これは ψ1(x2) = x2 + 2, ψ2(x2) = 4 − x22, −2 ≤ x2 ≤ 1 の場合で
ある. ∫

D

f(x)dx =

∫ 1

−2

(∫ 4−x22

x2+2

x21x2dx1

)
dx2

=

∫ 1

−2

x2

(∫ 4−x22

x2+2

x21dx1

)
dx2

=

∫ 1

−2

x2

[
1

3
x31

]4−x22
x2+2

dx2

= −243

40
.� �
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定理� �
定理 32 (2変数の置換積分（変数変換）). 有界な領域Ω, D ⊂ R2 とする. 写像

Φ : Ω → D, Φ ∈ C1(Ω)× C1(Ω)

は全単射であるとする.

JΦ : Ω → R, JΦ = det

(
∂x1Φ1 ∂x2Φ1

∂x1Φ2 ∂x2Φ2

)

は JΦ(u) 6= 0 (u ∈ Ω) をみたすとする. このとき面積確定の閉領域 Ω1 ⊂ Ω に対し
てD1 = Φ(Ω1) も面積確定であり

|D1| =
∫
Ω1

|JΦ(u)|du

が成り立つ. さらにD1 上で積分可能な f : R2 → R に対して f ◦ Φ : Ω → R は Ω1

上で積分可能であり ∫
D1

f(x)dx =

∫
Ω1

f (Φ(u)) |JΦ(u)|du

が成り立つ.� �
定理を証明するための補題
定理の証明にはいくつかのステップが必要となる. そのステップを補題として紹介す
る. 補題では特別な条件の場合を考えることがあるが, とくに言及がない場合は補題に
おける仮定は定理における仮定と同じである.
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� �
補題 1. u0 ∈ R2, a ∈ R2

>0 とする.

Ω1 = [u0 − a,u0 + a]

とする. A を 2× 2 行列とする. 以下で与えられる線形変換

x− x0 = A(u− u0)

によりΩ1 がD1 に写像されるとする. このとき

|D1| = |detA| |Ω1|

が成り立つ.� �
証明.

X = x− x0, α =

(
A11

A21

)
, β =

(
A12

A22

)

とおくと, A =
(
α β

)
であり

tX = (u1 − u0,1)α+ (u2 − u0,2)β

とかける. この線形変換によってΩ1 はα,β に平行な辺をもつ平行四辺形D1 に写像さ
れる. D1 の辺をベクトルで表すと

a = 2a1α, b = 2a2β

となるので行列式と平行四辺形の面積の関係式により

|D1| =
∣∣∣det(2a1α 2a2β

)∣∣∣ = 4a1a2

∣∣∣det(α β
)∣∣∣ .

|Ω1| = 4a1a2 なので求める式を得る.� �
補題 2. Ω1 = [a,b] に対しD1 = Φ(Ω1) とおく. このとき

|D1| =
∫
Ω1

|JΦ(u)|du

が成り立つ.� �
証明. u,u0 ∈ Ω1 に対して平均値の定理により

Φ1(u)− Φ1(u0) = (∇Φ1(c0),u− u0) ,

Φ2(u)− Φ2(u0) = (∇Φ2(c0
′),u− u0)
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をみたす c0, c0
′ が u と u0 を結ぶ線分上に存在する.

R1 = |Φ1(u)− Φ1(u0)− (∇Φ1(u0),u− u0)|

と定義する*1.

R1 ≤ |∇Φ1(c0)−∇Φ1(u0)| |u− u0|

である. ∂x1Φ1, ∂x2Φ1 は連続なのでΩ1 上一様連続である. したがって任意の ε > 0 に対
して δ1 = δ1(ε) > 0 が存在し |c0 − u0| < δ1 ならば

|∇Φ1(c0)−∇Φ1(u0)| <
ε√
2

が成り立つ. したがって

R1 <
ε√
2
|u− u0| .

同じ様に

R2 = |Φ2(u)− Φ2(u0)− (∇Φ2(u0),u− u0)|

と定義すると δ2 = δ2(ε) > 0 が存在し |c0′ − u0| < δ2 ならば

R2 <
ε√
2
|u− u0|

が成り立つ. c0 と c0
′ は u と u0 を結ぶ線分上に存在するので, 結局 δ = min(δ1, δ2) と

おくと |u− u0| < δ ならば*2

R1 <
ε√
2
|u− u0| , R2 <

ε√
2
|u− u0|

が成り立つ. 長方形Ω1 の各辺を n 等分して得られる分割を

∆ = {∆ij}1≤i,j≤n

とする. 各小長方形∆ij の中心を u0
ij とする. 分点を u1,i, u2,j (0 ≤ i, j ≤ n) とかくこと

にする. N = N(δ) ≥ 1 が存在し n ≥ N ならば

‖∆‖ = max
1≤i,j≤n

|(u1,i − u1,i−1, u2,j − u2,j−1)| < min(δ, 1)

が成り立つ. Dij = Φ(∆ij) とおく. また x0
ij = Φ(u0

ij) とおく. 線形変換

x− x0
ij =

(
∂x1Φ1

(
u0
ij

)
∂x2Φ1

(
u0
ij

)
∂x1Φ2

(
u0
ij

)
∂x2Φ2

(
u0
ij

)) (u− u0
ij

)
*1R1 は u0 から u への変化における Φ1 の増加量と u0 における偏微係数を増加率とする増加量の誤差
を表している.

*2実際に 0 < θ < 1 が存在し c0 = θu+ (1− θ)u0 とかけるので |c0 − u0| = θ|u− u0|となる.
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による∆ij の像を Eij とする. u を小長方形∆ij の境界 ∂∆ij を動かしたときにDij =

Φ(∆ij) とEij の差は √
R2

1 +R2
2 < ε max

u∈∂∆ij

∣∣u− u0
ij

∣∣ < ε

で評価される. このことはDij が平行四辺形Eij で近似できることをいっている. Eij の
各辺を λ > 0 倍した平行四辺形をEij(λ) とかくことにすると, ここまでに得られた評価
式によりK = K(ε) ≥ N が存在し n ≥ K ならば, すべての i, j に対して

Eij(1− ε) ⊂ Dij ⊂ Eij(1 + ε)

が成り立つ様にできる. Eij(λ) = λ2Eij なので

(1− ε)2
∑
i,j

|Eij| ≤
∑
i,j

|Dij| ≤ (1 + ε)2
∑
i,j

|Eij|

である. 補題 1により |Eij| =
∣∣JΦ (u0

ij

)∣∣ |∆ij| なので∑
i,j

|Eij| =
∑
i,j

∣∣JΦ (u0
ij

)∣∣ |∆ij|

は JΦ のひとつのリーマン和である. JΦ はΩ1 上連続なので積分可能である. したがって∑
i,j

|Eij| −−−−→
∥∆∥→0

∫
Ω1

|JΦ(u)|du

となる. 一方で∑i,j |Dij| = |D1| なので

(1− ε)2
∫
Ω1

|JΦ(u)|du ≤ |D1| ≤ (1 + ε)2
∫
Ω1

|JΦ(u)|du

である. ε > 0 の任意性により

|D1| =
∫
Ω1

|JΦ(u)|du

を得る*3. ここで |D1| は広義分割の意味で定義された面積である.� �
補題 3. Ω1 ⊂ Ω をΩ1 ⊂ Ω なる面積確定の領域であるとする. このときD1 = Φ(Ω1)

も面積確定であり

|D1| =
∫
Ω1

|JΦ(u)|du

が成り立つ.� �
*3|D1| ≤ inf

ε>0

(
(1 + ε)2

∫
Ω1

|JΦ(u)|du
)

=

∫
Ω1

|JΦ(u)|du.もう一方の不等式も同様.
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証明. R2 を 1 辺が 2−n の正方形で等間隔に分割する. このときΩ1 に含まれるこの正方
形の和集合を Ωn

1 とする. 同様に Ω1 の点を少なくともひとつ含むこの正方形の和集合
をΩn

2 とおく.

Ωn
1 ⊂ Ω1 ⊂ Ωn

2

である. Ω1 は面積確定なので

lim
n→∞

|Ωn
1 | = lim

n→∞
|Ωn

2 | = |Ω1|.

Φ
(
Ωn
j

)
= Dn

j (j = 1, 2)

とおくと

Dn
1 ⊂ D ⊂ Dn

2 .

また補題 2により

|Dn
j | =

∫
Ωn

j

|JΦ(u)|du.

このときN1 ≥ 1 が存在しΩN1
2 ⊂ Ω が成り立つ. ここでΩn+1

2 ⊂ Ωn
2 である.

M = max
u∈ΩN1

2

|JΦ(u)|

とおくと, 任意の ε > 0 に対してN2 ≥ 1 が存在し n ≥ N2 ならば

|Ωn
2 \ Ωn

1 | = |Ωn
2 | − |Ωn

1 | <
ε

M

が成り立つ. N = max(N1, N2) とおくと n ≥ N ならば

|Dn
2 | − |Dn

1 | =
∫
Ωn

2

|JΦ(u)|du−
∫
Ωn

1

|JΦ(u)|du

=

∫
Ωn

2 \Ωn
1

|JΦ(u)|du

< ε.

また同様に n > m ≥ N ならば ∣∣|Dn
j | − |Dm

j |
∣∣ < ε

を得るので {|Dn
j |} はコーシー列. したがって上のふたつから

lim
n→∞

|Dn
2 | = lim

n→∞
|Dn

1 |
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を得る. いま

Dn
1 ⊂ Dn ⊂ Dn

2

なので

|Dn
1 | ≤ |Dn| ≤ |Dn

2 |

である. したがって

|D1| = lim
n→∞

|Dn
1 |

= lim
n→∞

∫
Ωn

1

|JΦ(u)|du

=

∫
Ω1

|JΦ(u)|du.

ここで 3 番目の等式はリーマン積分の定義により得られることに注意.� �
補題 4. f がD1 上で積分可能ならば f ◦ Φ はΩ1 上で積分可能である.� �
証明.

K = max
x∈D1

|JΦ−1(x)|

とおく. 任意の ε > 0 とする. D1 に対する広義分割 ∆̃1 ∈ G が存在して過剰和について

S̃f,∆̃1
− ε

2K
<

∫
D1

f(x)dx ≤ S̃f,∆̃1
.

また ∆̃2 ∈ G が存在して不足和について

s̃f,∆̃1
≤
∫
D1

f(x)dx < s̃f,∆̃1
+

ε

2K
.

∆̃ = ∆̃1 ∪ ∆̃2 とすると

0 ≤ S̃f,∆̃ − s̃f,∆̃ ≤ S̃f,∆̃1
− s̃f,∆̃2

<
ε

2K
+

∫
D1

f(x)dx−
(∫

D1

f(x)dx− ε

2K

)
=

ε

K

が成り立つ. 分割を ∆̃ = {δi}ni=1 とおいて ωi = Φ−1(δi) とする. 逆写像定理*4により
Φ−1 : D → Ω は全単射であり

JΦ−1(x) 6= 0 (x ∈ D)

*4適当な文献かこの参考資料の付録を参照.
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である. また補題 3により

|ωi| =
∫
δi

|JΦ−1(x)| dx

である. とくに∆′ = {ωi}ni=1 はΩ1 の広義分割である. このとき f ◦ Φ の過剰和, 不足和
について

0 ≤ S̃f◦Φ,∆′ − s̃f◦Φ,∆′ =
n∑
i=1

(Mi −mi)|ωi|

≤ K
n∑
i=1

(Mi −mi)|δi|

= K
(
S̃f,∆ − s̃f,∆

)
< ε.

このことは
S̃f◦Φ,∆′ = s̃f◦Φ,∆′

を意味する. ここで

Mi = sup
u∈ωi

f (Φ(u)) = sup
x∈δi

f(x),

mi = inf
u∈ωi

f (Φ(u)) = inf
x∈δi

f(x)

とおいた. このことは f ◦ Φ がΩ1 上積分可能であることをいっている.

定理 32の証明
上の補題の記号をそのまま用いることにする.

mi ≤ f (Φ(u)) ≤Mi (u ∈ ωi)

の両辺に |JΦ(u)| をかけて ωi 上積分すると∫
ωi

mi|JΦ(u)|du ≤
∫
ωi

f (Φ(u)) |JΦ(u)|du ≤
∫
ωi

Mi|JΦ(u)|du.

また, 補題 3により

|δi| =
∫
ωi

|JΦ(u)|du

なので

mi|δi| ≤
∫
ωi

f (Φ(u)) |JΦ(u)|du ≤Mi|δi|.
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また
n∑
i=1

∫
ωi

f (Φ(u)) |JΦ(u)|du =

∫
Ω1

f (Φ(u)) |JΦ(u)|du

である. 以上により
n∑
i=1

mi|δi| ≤
∫
Ω1

f (Φ(u)) |JΦ(u)|du ≤
n∑
i=1

Mi|δi|.

すなわち

s̃f,∆̃ ≤
∫
Ω1

f (Φ(u)) |JΦ(u)|du ≤ S̃f,∆̃.

f はD1 上積分可能なので

sup
∆̃∈G

s̃f,∆̃ = inf
∆̃∈G

S̃f,∆̃ =

∫
D1

f(x)dx

である. 一方で上の評価式により∫
Ω1

f (Φ(u)) |JΦ(u)|du

は s̃f,∆̃ の上界のひとつなので∫
Ω1

f (Φ(u)) |JΦ(u)|du ≥
∫
D1

f(x)dx.

同じ様に ∫
Ω1

f (Φ(u)) |JΦ(u)|du

は S̃f,∆̃ の下界のひとつなので∫
Ω1

f (Φ(u)) |JΦ(u)|du ≤
∫
D1

f(x)dx.

以上により定理 1 が証明された.
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� �
例 29 (線形変換の例).

D =
{
x ∈ R2; x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1

}
とする. 関数

f(x) = 2(x1 + x2)
6(x1 − x2)

8 (x ∈ D)

とする. 線形変換

x1 + x2 = u1, x1 − x2 = u2

となるように Φ を定義する. すなわち

x1 =
u1 + u2

2
, x2 =

u1 − u2
2

により

Φ(u) = (x1(u), x2(u)) =

(
u1 + u2

2
,
u1 − u2

2

)
と

|JΦ(u)| =

∣∣∣∣∣det
(
1/2 1/2

1/2 −1/2

)∣∣∣∣∣ = 1

2
.

したがって
Ω =

{
u ∈ R2; 0 ≤ u1 ≤ 1, −u1 ≤ u2 ≤ u1

}
に対して ∫

D

f(x)dx =

∫
Ω

f (Φ(u)) |JΦ(u)|du

=

∫ 1

0

u61

(∫ u1

−u1
u82du2

)
du1

=
1

72
.� �
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� �
例 30 (曲座標変換の例). a > 0, b > 0 として

D =
{
x ∈ R2; (x1/a)

2 + (x2/b)
2 ≤ 1

}
とする. 関数

f(x) = ‖x‖2 (x ∈ D)

の積分を求める. 上の定理において

u1 = r ∈ [0, 1], u2 = θ ∈ [0, 2π]

として
Φ (r, θ) = (x1(r, θ), x2(r, θ)) = (ar cos θ, br sin θ)

とおく. このとき

|JΦ(r, θ)| =

∣∣∣∣∣det
(
a cos θ −ar sin θ
b sin θ br cos θ

)∣∣∣∣∣ = abr.

したがって
Ω =

{
(r, θ) ∈ R2; 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π

}
∫
D

f(x)dx =

∫∫
Ω

f (Φ(r, θ)) |JΦ(r, θ)|drdθ

= ab

∫∫
{(r,θ)∈R2; 0≤r≤1, 0≤θ≤2π}

(
a2r3 cos2 θ + b2r3 sin2 θ

)
drdθ

= a3b

[∫ 2π

0

cos2 θdθ

∫ 1

0

r3dr

]
+ ab3

[∫ 2π

0

sin2 θdθ

∫ 1

0

r3dr

]
= (a3b/4)

∫ 2π

0

cos2 θdθ + (ab3/4)

∫ 2π

0

sin2 θdθ

=
a2 + b2

4
πab.� �
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第12章 広義積分

ここでは積分の範囲に関数を定義できない点が含まれている場合や積分の範囲が有界
でない場合の積分の求め方である広義積分を学ぶ. はじめは議論を簡単にするため関数
は非負の値をとる場合を扱う.

Dを近似する有界集合� �
D を有界集合で近似するために

K =

{
K ⊂ D; K :有界閉集合かつ |K| <∞

}
と定義する.� �
広義積分は次で定義される.

広義積分� �
f : D → [0,∞)とする. このときD 上の広義積分を∫

D

f(x)dx = sup
K∈K

∫
K

f(x)dx

で定義する. この値が有限のとき f は広義積分可能であるという.� �
近似列� �
D の部分集合族 {Kn} = {Kn}∞n=1 ⊂ K がD の近似列とは次の性質をもつことを
いう.

(1) Kn ⊂ Kn+1 (n ≥ 1).

(2) 任意のK ∈ K に対してN ≥ 1 が存在しK ⊂ KN が成り立つ.� �
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� �
D = {x ∈ R2; 0 ≤ ‖x‖ ≤ 1} とする. {Kn} を

Kn =

{
x ∈ R2;

1

n
≤ ‖x‖ ≤ 1

}
と定義するとD の近似列のひとつである. {Kn

′} を

Kn
′ =

{
x ∈ R2;

1

n
≤ ‖x‖ ≤ 1− 1

n

}
と定義するとD の近似列のひとつである.� �� �
D = {x ∈ R2; 1 ≤ ‖x‖ <∞} とする. {Kn} を

Kn =

{
x ∈ R2; 1 +

1

n
≤ ‖x‖ ≤ 1 + n

}
と定義するとD の近似列のひとつである. {Kn

′} を

Kn
′ =

{
x ∈ R2; 1 +

1√
n
≤ ‖x‖ ≤ 1 + n2

}
と定義するとD の近似列のひとつである.� �
広義積分の実用的な計算法は次の定理によって与えられる. 近似列を計算に都合よく選
ぶことができる.� �
定理 33. D ⊂ R2 とする. f : D → [0,∞) とする. D の近似列 {Kn} を適当に選
んで

I = lim
n→∞

∫
Kn

f(x)dx

が存在するとする. このとき f はD 上広義積分可能であり∫
D

f(x)dx = lim
n→∞

∫
Kn

f(x)dx

が成り立つ. さらに任意のD の近似列 {Ln} に対して∫
D

f(x)dx = lim
n→∞

∫
Ln

f(x)dx

が成り立つ.� �



85

証明. 数列 {an} を

an =

∫
Kn

f(x)dx (n ≥ 1)

と定義する. このとき f ≥ 0 なので {an} は収束する単調増加列である. すなわち {an}
は上に有界な単調増加列であるから

lim
n→∞

an = sup
n≥1

an.

任意の n ≥ 1 に対して

an ≤ sup
K∈K

∫
K

f(x)dx.

任意の ε > 0 に対してK ′ ∈ K が存在し

sup
K∈K

∫
K

f(x)dx− ε <

∫
K′
f(x)dx.

このときN ≥ 1 が存在しK ′ ⊂ KN となるので

sup
K∈K

∫
K

f(x)dx− ε <

∫
K′
f(x)dx ≤

∫
KN

f(x)dx = aN .

このことは
sup
n≥1

an = sup
K∈K

∫
K

f(x)dx

を意味する. 以上により
lim
n→∞

an = sup
K∈K

∫
K

f(x)dx.

{Ln} を任意のD の近似列とする. {bn} を

bn =

∫
Ln

f(x)dx (n ≥ 1)

で定義すると {bn} は単調増加列ある. 任意の n ≥ 1 に対して Ln ∈ K なのでN ≥ 1 が
存在し Ln ⊂ KN となるので

bn ≤ aN ≤ sup
K∈K

∫
K

f(x)dx.

すなわち上に有界であるから

lim
n→∞

bn = sup
n≥1

bn ≤ sup
K∈K

∫
K

f(x)dx.

前半の {an} に対する議論を {bn} に当てはめることができるので

lim
n→∞

bn = sup
K∈K

∫
K

f(x)dx.
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� �
注意 12. D ⊂ R2 が有界閉集合のときD ⊂ K である. D の近似列 {Kn} を

Kn = D (n ≥ 1)

と定義すれば有界閉集合上で積分可能な関数に対する通常の積分と広義積分の値が
一致することがわかる.� �
一般の場合� �
f ≥ 0 と限らない場合. f : D → R に対して

f+(x) = max (f(x), 0) (x ∈ D)

f−(x) = max(−f(x), 0) = −min(f(x), 0) (x ∈ D)

と定義する. f+, f− ≥ 0 である. さらに

f = f+ − f−, |f | = f+ + f−

が成り立つ. f+ と f− がそれぞれ広義積分可能なとき f は広義積分可能であると
いい ∫

D

f(x)dx =

∫
D

f+(x)dx−
∫
D

f−(x)dx

と定義する.� �� �
例 31 (ガウス積分).

D =
{
x ∈ R2; x1 ≥ 0, x2 ≥ 0

}
において関数

f(x) = e−∥x∥2 (x ∈ D)

を積分することを考える.

Kn =
{
x ∈ R2; x1, x2 ≥ 0, ‖x‖ ≤ n

}
とすれば {Kn} はD の近似列となっていることがわかる. 極座標変換により∫

Kn

e−∥x∥2dx =

∫ π/2

0

∫ n

0

e−r
2

rdrdθ =
π

4

(
1− e−n

2
)
−−−→
n→∞

π

4
.

となる.� �
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� �
例 32. 定数R > 0 とする. 次の集合

D =
{
x ∈ R2; 0 ≤ ‖x‖ ≤ R

}
において関数

f(x) =
1

‖x‖α
(x ∈ D \ {0})

を積分する事を考える. ここで 0 < α < 2. f は原点において定義できない. 次の様
に広義積分の意味で積分を求めることができる.

Kn =

{
x ∈ R2;

1

n
≤ ‖x‖ ≤ R

}
とおくと {Kn}∞n=1 はD の近似列となっていることがわかる. 極座標変換より∫

Kn

f(x)dx =

∫ R

1/n

∫ 2π

0

1

rα
rdrdθ

=

∫ R

1/n

∫ 2π

0

1

rα−1
drdθ

= 2π

[
1

2− α
r2−α

]R
1/n

=
2π

2− α

[
R2−α −

(
1

n

)2−α
]

−−−→
n→∞

2πR2−α

2− α
.� �
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� �
例 33. 定数R > 0 とする. 次の集合

D =
{
x ∈ R2; ‖x‖ ≥ R

}
において関数

f(x) =
1

‖x‖α
(x ∈ D)

を積分する事を考える. ここで α > 2. 次の様に広義積分の意味で積分を求めること
ができる.

Kn =
{
x ∈ R2; R ≤ ‖x‖ ≤ n

}
とおくと {Kn}∞n=1 はD の近似列となっていることがわかる. 極座標変換より∫

Kn

f(x)dx =

∫ n

R

∫ 2π

0

1

rα
rdrdθ

=

∫ n

R

∫ 2π

0

1

rα−1
drdθ

= 2π

[
1

2− α
r2−α

]n
R

=
2π

2− α

[
n2−α −R2−α]

−−−→
n→∞

2πR2−α

α− 2
.� �
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付 録A 陰関数定理, 逆写像定理

次の集合

A = {x ∈ R2; f(x) = 0}

は適当な関数 φ : I → R, I ⊂ R によってグラフ

{(x1, x2); x2 = φ(x1) (x1 ∈ I)}

として表すことができるだろうか. この様な問題に対する定理が陰関数定理である.

f(x) = 1− x21 + x22 (x ∈ R2)

を考える. このときA = ∂B1(0)となる. これをある関数φのグラフで表すにはφ1(x1) =√
1− x21 と φ2(x1) = −

√
1− x21 のふたつの関数が必要となってしまう. 陰関数定理で

は I ⊂ R を適当に定めてやれば φ が一意に定まるというのである.
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陰関数定理 1� �
定理 34 (陰関数定理 1). 開集合D ⊂ R2 とする. f : D → R はC1 級であるとする.

a ∈ D において
f(a) = 0, fx2(a) 6= 0

をみたすならば δ ∈ (0,∞)× (0,∞) が存在し

(i) [a− δ, a+ δ] ⊂ D.

(ii) 任意の x1 ∈ (a1 − δ1, a2 + δ2) に対して x2 ∈ (x2 − δ2, x2 + δ2) が一意的に存
在し

f(x) = 0 (x = (x1, x2))

をみたす. これにより x1 から x2 への対応が決まるのでその対応を関数

φ : (a1 − δ1, a1 + δ1) → (a2 − δ2, a2 + δ2)

とすれば f(x) = 0 をみたす x ∈ (a− δ, a+ δ) は x2 = φ(x1) のグラフとして
表される.

(iii) (ii) で得られた φ はC1 級である. さらに

φ′(x1) = −fx1(x1, φ(x1))
fx2(x1, φ(x1))

が成り立つ.

(iv) k ≥ 1 とする. f がCk 級ならば φ はCk 級.� �
証明. 簡単のため

f(a) = 0, fx2(a) > 0

の場合を考える.

Step 1 仮定により fx2 は連続なので a の適当な近傍において fx2 > 0 となる. すなわ
ち δ0 ∈ (0,∞)× (0,∞) が存在し

fx2(x) > 0 (x ∈ [a− δ0, a+ δ0]).

関数 x2 7→ f(a1, x2) は [a2 − δ0,2, a2 + δ0,2] において狭義単調増加なので f(a) = 0 だから

f(a1, a2 + δ0,2) > 0,

f(a1, a2 − δ0,2) < 0

となる. f は連続なので (a1, a2 + δ0,2) の適当な近傍で f > 0. (a1, a2 − δ0,2) の適当な近
傍で f < 0 となる. したがって適当な δ ∈ (0,∞) × (0,∞) で δ2 = δ0,2 なるものが存在
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して

f(x1, a2 + δ2) > 0 (x1 ∈ [a1 − δ1, a1 + δ1]),

f(x1, a2 − δ2) < 0 (x1 ∈ [a1 − δ1, a1 + δ1])

が成り立つ.

Step 2 任意に x1 ∈ [a1 − δ1, a1 + δ1] を固定する. このとき関数

z = f(x1, x2) (x2 ∈ [a2 − δ2, a2 + δ2])

の狭義単調増加性を考慮して 1変数の中間値の定理を適用すると x2 ∈ (a2 − δ2, a2 + δ2)

が一意的に存在し
f(x1, x2) = 0

となる. こうして x1 に上の様な x2 が唯一に定まるので, それを関数

x2 = φ(x1) (x1 ∈ [a1 − δ1, a1 + δ1])

として定義する.

Step 3 次に連続性を示すために任意の s0 ∈ (a1 − δ1, a1 + δ1) とする. 任意の

0 < ε < min (δ2 + (a2 − φ(s0)), δ − (a2 − φ(s0))

とする.

f(s0, φ(s0)) = 0

なので

f (s0, φ(s0) + ε) > 0,

f (s0, φ(s0)− ε) < 0.

Step 1の議論と同様にして 0 < γ < min (δ1 + a1 − s0, δ1 − (a1 − s0)) が存在して

f (x1, φ(s0) + ε) > 0 (x1 ∈ (s0 − γ, s0 + γ)),

f (x1, φ(s0)− ε) < 0 (x1 ∈ (s0 − γ, s0 + γ)).

したがって任意の x1 ∈ (s0 − γ, s0 + γ) ⊂ (a1 − δ1, a1 + δ1) に対して一意的に x2 ∈
(φ(s0)− ε, φ(s0) + ε) ⊂ (a2 − δ2, a2 + δ1) が存在し

f(x) = 0

が成り立つが一意性により x2 = φ(x1) である. このことは |φ(s0)−φ(x1)| < ε を意味す
るので s0 における連続性をいっている.

Step 4 任意の s0 ∈ (a1 − δ1, a1 + δ1) とする. h ∈ R を s0 + h ∈ (a1 − δ1, a1 + δ1) とな
る様に選ぶ.

k(h) = φ(s0 + h)− φ(s0),

g(t) = f(s0 + th, φ(s0) + tk(h)) (t ∈ [0, 1])
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とおく. g(0) = g(1) = 0 なので 1変数のロルの定理により θ ∈ (0, 1) が存在し

g′(θ) = 0

が成り立つ.

g′(t) =
∂f

∂x1
(s0 + th, φ(s0) + tk(h))h+

∂f

∂x2
(s0 + th, φ(s0) + tk(h))k(h)

なので

g′(θ) =
∂f

∂x1
(s0 + θh, φ(s0) + θk(h))h+

∂f

∂x2
(s0 + θh, φ(s0) + θk(h))k(h)

= 0.

これより

φ′(s0) = lim
h→0

k(h)

h
= lim

h→0

(
−fx1(s0 + θh, φ(s0) + θk(h))

fx2(s0 + θh, φ(s0) + θk(h))

)
= −fx2(s0, φ(s0))

fx2(s0, φ(s0))
.

f はC1 級なので φ もC1 級.

Step 5 f がCk 級ならばφ はCk 級であることを示そう. まず f がC2 級ならば上の式
を微分して φ がC1 であることにより φ がC2 級であることが従う. これを繰り返すと
Ck 級であることが確かめられる.

fx2 < 0の場合 fx2 < 0 の場合は g = −f に上の証明を適用すれば良い.

陰関数定理 2

記法� �
D ⊂ R2 とする. D で定義されR2 に値をとる写像を f : D → R2 とかく. f = (f1, f2)

の f1, f2 がC1 級のときC1 級写像という.� �
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� �
定理 35 (陰関数定理 2). 開集合D ⊂ R2+2 とする. f : D → R2 はC1 級であるとす
る. (a,b) ∈ D において

fi(a,b) = 0 (i = 1, 2)

と

det


∂f1
∂y1

(a,b)
∂f1
∂y2

(a,b)

∂f2
∂y1

(a,b)
∂f2
∂y2

(a,b)

 6= 0

をみたすならば δ ∈ (0,∞)× (0,∞) が存在し

(i) Bδ1(a)× Bδ2(b) ⊂ D.

(ii) 任意の x ∈ Bδ1(a) に対して y ∈ Bδ2(b) が一意的に存在し

fi(x,y) = 0 (i = 1, 2)

をみたす. これにより x から y への対応が決まるのでその対応を関数

φ : Bδ1(a) → Bδ2(b)

とすれば fi(x,y) = 0 をみたす (x,y) ∈ Bδ1(a) × Bδ2(b) は y = φ(x) のグラ
フとして表される.

(iii) (ii) で得られたφ はC1 級である. さらに
∂φ1

∂x1
(x)

∂φ1

∂x2
(x)

∂φ2

∂x1
(x)

∂φ2

∂x2
(x)



= −


∂f1
∂y1

(x,φ(x))
∂f1
∂y2

(x,φ(x))

∂f2
∂y1

(x,φ(x))
∂f2
∂y2

(x,φ(x))


−1

∂f1
∂x1

(x,φ(x))
∂f1
∂x2

(x,φ(x))

∂f2
∂x1

(x,φ(x))
∂f2
∂x2

(x,φ(x))


が成り立つ.

(iv) k ≥ 1 とする. f がCk 級写像ならばφ はCk 級写像.� �
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補題
証明のために準備をする. (a,b) = (0, 0) の場合に示せば十分である.

(0, 0) ∈ D, fi(0, 0) = 0, det (Dyf) (0, 0) 6= 0

を仮定する. ここで行列
Dyf =

(
∂fi
∂yj

)
1≤i,j≤2

とおいた. 縮小写像の原理*1を用いたいのでT : D → R2 を

T(x,y) = y − (Dyf(0, 0))
−1 f(x,y)

と定める. 仮定より

T(0, 0) = 0,

DyT(0, 0) = O,

T(x,y) = y ⇐⇒ f(x,y) = 0

がいえる.� �
補題 5. D ⊂ R2+2 を (0, 0) のある近傍とする. T : D → R2 は

T(0, 0) = 0,

DyT(0, 0) = O (零行列)

をみたすとする. このとき δ ∈ (0,∞)× (0,∞) が存在して次が成り立つ.

(i) Bδ1(0)× Bδ2(0) ⊂ D.

(ii) 任意の x ∈ Bδ1(0) に対しT(x, ·) はT(x, ·) : Bδ2(0) → Bδ2(0) なる写像として
Bδ2(0) における一意的な不動点をもつ.

(iii) (ii) で得られた, 各 x ∈ Bδ1(0) に対する不動点 y への対応を

φ : Bδ1(0) → Bδ2(0)

とするとφ はC1 級写像である.

(iv) k ≥ 1 とする. T をCk 級写像とするとφ はCk 級写像である.� �
*1バナッハの不動点定理とも呼ばれる. 証明は単純で難しくはないがここでは述べないので完備距離空
間を論じた文献を参照のこと. 縮小写像の原理は微分積分学の範囲を超えている様にも思えるがその証明
に至るまでの議論において当然であるが陰関数定理が必要になることはない.
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証明. Step 1 T が C1 級写像であること及びT(0, 0) = 0, DyT(0, 0) = O であること
から δ ∈ (0,∞)× (0,∞) が存在し

Bδ1(0)× Bδ2(0) ⊂ D

と

‖DyT(x,y)‖M(2,2) ≤
1

2
((x,y) ∈ Bδ1(0)× Bδ2(0)),

‖T(x, 0)‖ ≤ 1

3
δ2 (x ∈ Bδ1(0))

が成り立つ*2.

Step 2 任意の x ∈ Bδ1(0) を固定する. y,y′ ∈ Bδ2(0) に対して

‖T(x,y)−T(x,y′)‖ ≤ ‖y − y′‖ max
t∈[0,1]

‖DyT(x, (1− t)y + ty′)‖M(2,2)

≤ 1

2
‖y − y′‖

が成り立つ*3. また

‖T(x,y)‖ ≤ ‖T(x,y)−T(x, 0)‖+ ‖T(x, 0)‖

≤ 1

2
‖y‖+ 1

3
δ2

≤ 1

2
δ2 +

1

3
δ2

< δ2.

したがってT(x, ·) : Bδ2(0) → Bδ2(0) なる縮小写像となり一意的な不動点

y = T(x,y) ∈ Bδ2(0)

をもつ.

Step 3 各 x に対して不動点 y が決まるので, x から不動点 y への対応を与える写像
を φ : Bδ1(0) → Bδ2(0), y = φ(x) とする. 任意の s0 ∈ Bδ1(0) とする. h ∈ R2 を
s0 + h ∈ Bδ1(0) となるように選ぶ. このとき

‖φ(s0 + h)−φ(s0)‖ = ‖T (s0 + h,φ(s0 + h))−T (s0,φ(s0))‖
≤ ‖T (s0 + h,φ(s0 + h))−T (s0 + h,φ(s0))‖
+ ‖T (s0 + h,φ(s0))−T (s0,φ(s0))‖

≤ 1

2
‖φ(s0 + h)−φ(s0)‖+ ‖T (s0 + h,φ(s0))−T (s0,φ(s0))‖ .

*2行列 A = (Aij)1≤i,j≤2 ∈ M(2, 2)のノルムは ‖A‖M(2,2) = sup∥x∥=1 |Ax|である.
*3バナッハ空間における微分に関する平均値定理を用いた.
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右辺第 1項を左辺に移項すると
1

2
‖φ(s0 + h)−φ(s0)‖ ≤ ‖T (s0 + h,φ(s0))−T (s0,φ(s0))‖

を得る. T の連続性によりφ : Bδ1(0) → Bδ2(0) は連続となる.

Step 4 s0 ∈ Bδ1(0) とする. (s0,φ(s0)) でT は全微分可能なので

lim√
∥h∥2+∥k∥2→0

R(h,k)√
‖h‖2 + ‖k‖2

= 0

なるR(·, ·) を用いて

T(s0 + h,φ(s0) + k)−T(s0,φ(s0)) = DxT(s0,φ(s0))h+DyT(s0,φ(s0))k+R(h,k)

とかける.

k(h) = φ(s0 + h)−φ(s0)

のとき上の式は

φ(s0 + h)−φ(s0) = T(s0 + h,φ(s0))−T(s0,φ(s0))

= DxT(s0,φ(s0))h+DyT(s0,φ(s0)) (φ(s0 + h)−φ(s0))

+R(h,φ(s0 + h)−φ(s0))

なので

k(h) = DxT(s0,φ(s0))h+DyT(s0,φ(s0))k(h) +R(h,k(h)).

したがって

(I −DyT(s0,φ(s0)))k(h) = DxT(s0,φ(s0))h+R(h,k(h)).

‖DyT(s0,φ(s0))‖M(2,2) ≤ 1/2 なので I − DyT(s0,φ(s0)) は正則行列である*4 . した
がって

‖k(h)‖ ≤ ‖(I −DyT(s0,φ(s0)))
−1‖M(2,2)

×
(
‖DxT(s0,φ(s0))‖M(2,2)‖h‖+

‖R(h,k(h))‖
‖h‖+ ‖k(h)‖

(‖h‖+ ‖k(h)‖)
)

であるが ‖h‖ が十分小さいとき
‖R(h,k(h))‖
‖h‖+ ‖k(h)‖

≤ 1

2

*4‖A‖M(2,2) < 1 のとき (I − A)x = 0 ならば x = 0 である. 実際, x = x − (I − A)x = Ax なので
‖x‖ ≤ ‖A‖M(2,2)‖x‖ < ‖x‖ となり x = 0 を得る. また, 行列について Bx = 0ならば x = 0 が成り立つ
とき B は正則行列である. 実際に B =

(
b1 b2

) とかけば Bx = x1b1 + x2b2 = 0ならば x1 = x2 = 0
となるので b1,b2 は 1次独立となり B は正則.
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となるので
1

2
‖k(h)‖ ≤ C‖h‖

が成り立つ. 以上により

k(h) = (I −DyT(s0,φ(s0)))
−1DxT(s0,φ(s0))h+ η(h).

ここで η(·) は

lim
∥h∥→0

η(h)

‖h‖
= 0

をみたす. このことはφ が s0 で全微分可能で

Dxφ(s0) = (I −DyT(s0,φ(s0)))
−1DxT(s0,φ(s0))

であることを意味する. また右辺の連続性によりφ はC1 級写像.

Step 5 上式の右辺によりT がCk 級写像ならφ もCk 級写像.

陰関数定理 2の証明
補題によってy = φ(x)の存在は示されたので,行列の微分に関する等式を示せば良い.

f(x,φ(x)) = 0

を x で微分すると

Dxf(x,φ(x)) +Dyf(x,φ(x))Dxφ(x) = 0.

いま (x,φ(x)) は (0, 0) のある近傍にあり detDyf(x,φ(x)) 6= 0 なので

Dxφ(x) = − (Dyf(x,φ(x)))
−1Dxf(x,φ(x))

が成り立つ.
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逆写像定理� �
定理 36. 開集合D ⊂ R2 とする. f : D → R2 をC1 級写像とする. a ∈ D において

det


∂f1
∂x1

(a)
∂f1
∂x2

(a)

∂f2
∂x1

(a)
∂f2
∂x2

(a)

 6= 0

とする. このときR2 の開集合 U ⊂ D,V ⊂ R2 が存在し次をみたす.

(i) a ∈ U, f(a) ∈ V が成り立ち, f の U への制限 f |U : U → V は全単射写像で
ある.

(ii) 逆写像 g = (g1, g2) = f |U−1, y 7→ g(y) はC1 級写像で
∂g1
∂y1

(y)
∂g1
∂y2

(y)

∂g2
∂y1

(y)
∂g2
∂y2

(y)

 =


∂f1
∂x1

(g(y))
∂f1
∂x2

(g(y))

∂f2
∂x1

(g(y))
∂f2
∂x2

(g(y))


−1

が成り立つ.

(iii) k ≥ 1 とする. f がCk 級写像ならば g はCk 級写像である.� �
証明. Step 1

F(x,y) = f(x)− y ((x,y) ∈ D × R2)

とおく. b = f(a) と定義すると

F(a,b) = 0, detDxF(a,b) = detDxf(a) 6= 0

となる. したがって F に陰関数定理 2を x と y を入れ替えて適用できる. すなわち
δ ∈ (0,∞)× (0,∞) が存在して以下が成り立つ.

(i) すべての y ∈ Bδ2(b) に対してF(x,y) = 0 をみたす x ∈ Bδ1(a) が存在する.

(ii) (i) によって写像φ : Bδ2(b) → Bδ1(a), x = φ(y) が定まる. φ は C1 級写像であ
る. また

F(φ(y),y) = f(φ(y))− y = 0

が成り立つ.
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(iii) k ≥ 1 とする. f がCk 級写像ならばφ はCk 級写像である.

(iv) Bδ1(a) ⊂ D, detDxf(x) 6= 0 (x ∈ Bδ1(a)).

Step 2 f の連続性により 0 < ε ≤ δ1 が存在して

f(Bε(a)) ⊂ Bδ2(b)

が成り立つ. U = Bε(a), V = f(U) とおくと f : U → V は全単射写像であることは V

の定義と (i) により明らかである.

Step 3 次に V が開集合であることを示そう. 任意の t ∈ V とする. γ > 0 が存在して
Bγ(t) ⊂ V を示せば良い. s ∈ U が存在して t = f(s) が成り立つ.

F(s, t) = 0, detDxF(s, t) = detDxf(s) 6= 0

が成立するので陰関数定理 2をF : U ×Bδ2(b) → R2 に対して (s, t) において適用でき
る. したがって δ′ ∈ (0,∞)× (0,∞) が存在しBδ′1

(s)×Bδ2(t) ⊂ U ×Bδ2(b) が成り立ち
y ∈ Bδ′2

(t) に対してF(x,y) = f(x) − y = 0 をみたす x ∈ Bδ1(s) ⊂ U が一意的に存在
する. したがって y = f(x) ∈ f(U) = V となる. このことはBδ′2

(t) ⊂ V を意味するの
で, γ = δ′2 として証明された.

Step 4 以上により U, V は開集合で a ∈ U とφ(a) ∈ V が成り立ち f |U : U → V は全
単射写像である. f |U の逆写像 g : V → U はφ の定義域を V に制限したものである. す
なわち g = φ|V である. したがって g も C1 級写像である. f(g(y)) = y の両辺を微分
して

Dxf(x)|x=g(y)Dyg(y) = I.

Dxf(x) 6= 0 (x ∈ U) なので

Dyg(y) = (Dxf(g(y)))
−1 .

Step 5 上の議論により f がCk 級写像であればg はCk 級写像であることがわかる.
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