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第1章 フーリエ級数の導入とディリク
レ核

フーリエ級数
フーリエ級数の目的は 2π 周期関数 f : R → C の三角関数による展開

f(x) =
a0
2

+
∞∑
k=1

(ak cos(kx) + bk sin(kx))

に関することを考察することである. この展開式のことをフーリエ級数という. 複雑な
関数を性質のよく知られた三角関数で近似できないだろうかという疑問がフーリエ級数
を考えるに至る動機といえるであろう. オイラーの公式

eikx = cos(kx) + i sin(kx)

により

cos(kx) =
eikx + e−ikx

2
, sin(kx) =

eikx − e−ikx

2i

であるから, これを上のフーリエ級数の式に代入して, 極限のもとにある各項が収束す
るものとして計算すると

a0
2

+
∞∑
k=1

(ak cos(kx) + bk sin(kx)) =
a0
2

+
∞∑
k=1

(
ak
eikx + e−ikx

2
+ bk

eikx − e−ikx

2i

)
=
a0
2

+
∞∑
k=1

(
eikx

ak − ibk
2

+ e−ikxak + ibk
2

)
=
a0
2

+
∞∑
k=1

eikx
ak − ibk

2
+

∞∑
k=1

e−ikxak + ibk
2

=
a0
2

+
∞∑
k=1

eikx
ak − ibk

2
+

−1∑
k=−∞

eikx
a−k + ib−k

2

とかき変わるので

ck =


ak − ibk

2
(k ≥ 1)

a−k + ib−k

2
(k ≤ −1)

a0
2

(k = 0)
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と定義すると

a0
2

+
∞∑
k=1

(ak cos(kx) + bk sin(kx)) =
∞∑

k=−∞

cke
ikx

と表せる. クロネッカーのデルタ

δ(k, l) =

{
1 (k = l)

0 (k 6= l)

を導入すると

(2π)−1

∫ π

−π

ei(k−l)xdx = δ(k, l)

であることがわかる. f はフーリエ級数に展開できるものとする. すなわち

f(x) =
∞∑

k=−∞

cke
ikx

が成り立つものとする. さらに項別積分が可能であるとして計算をすると∫ π

−π

f(x)e−ilxdx =

∫ π

−π

(
∞∑

k=−∞

cke
ikx

)
e−ilxdx

= 2πcl

を得る. これらをもとにフーリエ係数が導入される.

フーリエ係数

積分可能な周期 2π の複素数値関数 f : R → C に対して

f̂(k) = (2π)−1/2

∫ π

−π

e−ikxf(x)dx (k ∈ Z)

で定義される写像 f̂ : Z → C をフーリエ変換という. 文献によっては f̂ または f̂(k) を
フーリエ係数と呼ぶ場合もある.

フーリエ変換を用いて f のフーリエ級数は

S[f ](x) = (2π)−1/2

∞∑
k=−∞

eikxf̂(k) (x ∈ R)

と表される. ただしこの級数はまだ収束するかわからないことに注意.
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フーリエ級数を考える上での問題点
数学的にきちんとフーリエ級数を考察する上では少なくとも以下の様な問題点が考え
られるであろう.

• フーリエ級数は収束するのか.

• 収束する場合は何に収束するのか.

• 収束する場合はどの様な意味で収束するのか.

区分的に連続
このあとフーリエ級数の収束について論じていくのであるが定理を述べるために用い
る用語を紹介する.

有界閉区間における関数 f : [a, b] → C が区分的に連続であるとは高々有限個の点

a ≤ c1 < c2 < · · · < cn ≤ b

において不連続であるが, 各区間 (ci, ci+1), 1 ≤ i ≤ n において連続で各 1 ≤ i ≤ n に対
して片側極限 lim

x→ci+0
f(x) と lim

x→ci−0
f(x) が存在することをいう.

区分的に連続な関数の導関数が区分的に連続なとき区分的にC1 であるという.

� �
例 1. f(x) = x (x ∈ [−π, π)) で与えられる 2π周期関数は区分的に連続である. ま
た導関数も区分的に連続なので区分的に C1 である. この例を理解するにはグラフ
をかいてみることをお勧めする.� �� �
例 2. f(x) = |x| (x ∈ [−π, π]) で与えられる 2π周期関数は区分的にC1 である. 実
は連続である.� �� �
例 3. f(x) = x2 (x ∈ [−π, π]) で与えられる 2π周期関数は区分的に C1 である. 実
は連続である.� �� �
例 4. 指数関数の定義域を局所的に制限しこれを 2π周期でR 全体に拡張した f(x) =

ex (x ∈ [−π, π)) によって与えられる 2π周期関数は区分的にC1 である.� �
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ディリクレ核

f に対してフーリエ級数の部分和 {SN [f ]}∞N=1 を

SN [f ](x) = (2π)−1/2

N∑
k=−N

eikxf̂(k) (x ∈ R, N ∈ N)

と定義する.

N ∈ N に対して

DN(x) = (2π)−1

N∑
k=−N

eikx (x ∈ R)

により定まるDN をディリクレ核という.

� �
補題 1. N ∈ N とする. f : R → C は周期 2π の区分的に連続な関数であるとする.

このとき, ディリクレ核を用いると部分和は

SN [f ](x) =

∫ π

−π

DN(y)f(x− y)dy (x ∈ R)

と表すことができる.� �
証明. 以下の様に計算できる.

SN [f ](x) = (2π)−1/2

N∑
k=−N

f̂(k)eikx

= (2π)−1

N∑
k=−N

∫ π

−π

e−ikyf(y)dyeikx

= (2π)−1

N∑
k=−N

∫ π

−π

eik(x−y)f(y)dy

=

∫ π

−π

DN(x− y)f(y)dy

=

∫ π

−π

DN(y)f(x− y)dy.
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ここで周期 2π の関数 g について∫ a+π

a−π

g(x)dx =

∫ π

a−π

g(x)dx+

∫ a+π

π

g(x)dx

=

∫ π

a−π

g(x)dx+

∫ a−π

−π

g(2π + t)dt (x = 2π + t と置換した)

=

∫ π

−π

g(x)dx (g の周期性を用いた)

が成り立つことを用いた.� �
補題 2. N ∈ N とする.

DN(x) = (2π)−1

(
1 + 2

N∑
k=1

cos(kx)

)
(x ∈ R)

が成り立つ. とくにDN は偶関数である.� �
証明. 和の範囲を

N∑
k=−N

=
−1∑

k=−N

+
∑
k=0

+
N∑
k=1

と分割できるので

DN(x) = (2π)−1

N∑
k=−N

eikx

= (2π)−1

(
−1∑

k=−N

+
∑
k=0

+
N∑
k=1

)
eikx

= (2π)−1

(
1 +

(
−1∑

k=−N

+
N∑
k=1

)
eikx

)

= (2π)−1

(
1 + 2

N∑
k=1

cos(kx)

)
.

ここで変数変換により得られる式
−1∑

k=−N

eikx =
N∑
k=1

e−ikx

とオイラーの公式より得られる式
N∑
k=1

(
eikx + e−ikx

)
= 2

N∑
k=1

cos(kx).

を用いた.
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� �
補題 3. N ∈ N とする.

DN(x) = (2π)−1 sin((N + 1/2)x)

sin(x/2)
(x 6= 0)

が成り立つ.� �
証明. オイラーの公式と等比級数の和の公式

N∑
k=0

rk =
1− rN+1

1− r

を適宜用いて計算すると

DN(x) = (2π)−1

N∑
k=−N

eikx

= (2π)−1
(
e−iNx + e−i(N−1)x + · · ·+ 1 + · · ·+ eiNx

)
= (2π)−1e−iNx

(
1 + eix + · · ·+ eiNx + · · ·+ ei2Nx

)
= (2π)−1e−iNx1− ei(2N+1)x

1− eix

= (2π)−1e−iNx1− ei(2N+1)x

1− eix
· e

−ix/2

e−ix/2

= (2π)−1 e
−i(N+1/2)x − ei(N+1/2)x

e−ix/2 − eix/2

= (2π)−1 sin((N + 1/2)x)

sin(x/2)
.
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第2章 L2最良近似

区間 [−π, π] 上の二乗可積分関数の空間は

L2(−π, π) =

{
f : [−π, π] → C; ‖f‖L2 =

(∫ π

−π

|f(x)|2dx
)1/2

<∞

}

と定義される. L2(−π, π) を L2 とかくことがある.

L2内積は

(f, g)L2 =

∫ π

−π

f(x)g(x)dx

と定義される.

すぐに確かめられるが

(f, f)L2 = ‖f‖2L2

が成り立つ.

A ⊂ Z に対して数列空間を

l2(A) =

ak : A→ C; ‖ak‖l2 =

(∑
k∈A

|ak|2
)1/2

<∞


と定義する. l2(A) を l2 とかくことがある.

l2 内積は

(ak, bk)l2 =
∑
k∈A

akbk

と定義される.
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L2最良近似� �
定理 1. f ∈ L2(−π, π) とする. 任意のN ∈ N とする. 任意の {dk}k∈Z ⊂ C に対
して ∥∥∥∥∥f − (2π)−1/2

N∑
k=−N

f̂(k)eikx

∥∥∥∥∥
2

L2

+
∥∥∥f̂ − dk

∥∥∥2
l2(−N≤k≤N)

=

∥∥∥∥∥f − (2π)−1/2

N∑
k=−N

dke
ikx

∥∥∥∥∥
2

L2

が成り立つ. とくに ∥∥∥f̂∥∥∥
l2(−N≤k≤N)

≤ ‖f‖L2

が成り立つ.� �
証明. フーリエ変換の定義式と {(2π)−1/2eikx}k∈Z ⊂ L2(−π, π) が正規直交系であること
を用いて

0 ≤

∥∥∥∥∥f − (2π)−1/2

N∑
k=−N

f̂(k)eikx

∥∥∥∥∥
2

L2

=

(
f − (2π)−1/2

N∑
k=−N

f̂(k)eikx, f − (2π)−1/2

N∑
l=−N

f̂(l)eilx

)
L2

= (f, f)L2 −

(
f, (2π)−1/2

N∑
l=−N

f̂(l)eilx

)
L2

−

(
(2π)−1/2

N∑
k=−N

f̂(k)eikx, f

)
L2

+ (2π)−1

N∑
k,l=−N

f̂(k)f̂(l)
(
eikx, eilx

)
L2

= ‖f‖2L2 −
∥∥∥f̂∥∥∥2

l2
−
∥∥∥f̂∥∥∥2

l2
+
∥∥∥f̂∥∥∥2

l2

= ‖f‖2L2 −
∥∥∥f̂∥∥∥2

l2(−N≤k≤N)
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を得る*1. 次に∥∥∥∥∥f − (2π)−1/2

N∑
k=−N

dke
ikx

∥∥∥∥∥
2

L2

=

(
f − (2π)−1/2

N∑
k=−N

dke
ikx, f − (2π)−1/2

N∑
l=−N

dle
ilx

)
L2

= ‖f‖2L2 − (2π)−1/2

N∑
l=−N

dl
(
f, eilx

)
L2 − (2π)−1/2

N∑
k=−N

dk(e
ikx, f)L2 +

N∑
k=−N

|dk|2

= ‖f‖2L2 −
(
f̂ , dk

)
l2
−
(
dk, f̂

)
l2
+ ‖dk‖2l2

となる. また f̂ と dk の誤差について計算すると∥∥∥f̂ − dk

∥∥∥2
l2
= ‖dk‖2l2 −

(
f̂ , dk

)
l2
−
(
dk, f̂

)
l2
+
∥∥∥f̂∥∥∥2

l2(−N≤k≤N)

なので∥∥∥∥∥f − (2π)−1/2

N∑
k=−N

dke
ikx

∥∥∥∥∥
2

L2

=
∥∥∥f̂ − dk

∥∥∥2
l2
−
∥∥∥f̂∥∥∥2

l2(−N≤k≤N)
+ ‖f‖2L2

=
∥∥∥f̂ − dk

∥∥∥2
l2
+

∥∥∥∥∥f − (2π)−1/2

N∑
k=−N

f̂(k)eikx

∥∥∥∥∥
2

L2

.

*1パーセバルの等式
∥∥∥f̂∥∥∥

l2(Z)
= ‖f‖L2 が成り立つことがあるのでそれによる誤解を避けるためにこの

部分は l2 を l2(−N ≤ k ≤ N)とかいている.
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� �
注意 1. f とそのフーリエ級数の部分和の誤差は

rN = f − (2π)−1/2

N∑
k=−N

f̂(k)eikx

となる. また f と任意の複素数列 {dk}k∈Z ⊂ C を係数とする三角多項式aとの誤差は

RN = f − (2π)−1/2

N∑
k=−N

dke
ikx

となる. このとき本質的には
{
f̂
}

k∈Z
6= {dk}k∈Z である場合を考えるのでL2 ノルム

で誤差を比較すると

‖rN‖L2 < ‖RN‖L2

が成り立つb. すなわち L2 で計れば常に誤差 rN は誤差RN より小さくなる.

a{eikx}の有限一次結合
b
{
f̂
}
k∈Z

6= {dk}k∈Z でも f̂(k) = dk なる項がある場合もあるが適当な l ≥ 1に対して f̂(l) 6= dl.� �
ベッセルの不等式� �
定理 2. f ∈ L2(−π, π) とする. このとき

(1)
∥∥∥f̂∥∥∥

l2(Z)
≤ ‖f‖L2 が成り立つ.

(2)
∥∥∥f̂∥∥∥

l2(Z)
= ‖f‖L2 が成り立つことの必要十分条件は

lim
N→∞

∥∥∥∥∥f − (2π)−1/2

N∑
k=−N

f̂(k)eikx

∥∥∥∥∥
2

L2

= 0

が成り立つことである.� �
証明. L2 最良近似の証明で得た次の式を用いる.

0 ≤

∥∥∥∥∥f − (2π)−1/2

N∑
k=−N

f̂(k)eikx

∥∥∥∥∥
2

L2

= ‖f‖2L2 −
∥∥∥f̂∥∥∥2

l2(−N≤k≤N)
.

(1) 上に有界な単調増加列はその上限に収束するので (1) を得る.

(2) 等式より明らかである.

∞∑
k=0

an が収束するならば lim
n→∞

an = 0 である. この基本的な事実によりリーマン・ル

ベーグの補題を得る.
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リーマン・ルベーグの補題� �
定理 3. f ∈ L2(−π, π) とする. このとき lim

|k|→∞
f̂(k) = 0 が成り立つ.

� �





19

第3章 フーリエ級数の基本的な収束
定理

� �
補題 4 (2重極限の交換). Ω ⊂ R2 とする. 2変数関数 f : Ω → R とする. 極限値

lim
(x,y)→(a,b)

f(x, y) = A

が存在するとする. このとき

(1) y 6= b に対して lim
x→a

f(x, y) = g(y) が存在するとき

lim
y→b

(
lim
x→a

f(x, y)
)
= lim

y→b
g(y) = A

が成り立つ.

(2) x 6= a に対して lim
y→b

f(x, y) = h(x) が存在するとき

lim
x→a

(
lim
y→b

f(x, y)

)
= lim

x→a
h(x) = A

が成り立つ.

すなわち上述の g, h が存在すれば極限の順序交換が可能である.� �
証明. 任意の ε > 0 に対して δ = δ(ε) > 0 が存在し

√
|x− a|2 + |y − b|2 < δ ならば

|f(x, y)− A| < ε

2
.

また lim
x→a

f(x, y) = g(y) の仮定より |y − b| < δ/
√
2 なる y に対して δ1 = δ1(ε, y) > 0 を

選んで |x− a| < δ1/
√
2 ならば

|f(x, y)− g(y)| < ε

2

が成り立つようにできる. したがって |y− b| < δ/
√
2 ならば, この y に応じて |x0 − a| <



20 第 3章 フーリエ級数の基本的な収束定理

(1/
√
2)min(δ, δ1) をみたす x0 を選んで

|g(y)− A| = |g(y)− f(x0, y) + f(x0, y)− A|
≤ |g(y)− f(x0, y)|+ |f(x0, y)− A|
< ε.

これは lim
y→b

g(y) = A であることをいっている. 上の議論では (x, y) ∈ Ω となる様に適当
に δ などのパラメータを選んでいることに注意.� �
注意 2. 二重数列 {am,n} の二重極限 lim

m,n→∞
am,n についても同様のことが言える.� �� �

補題 5. 区分的にC1 級の関数 f に対して

lim
z→+0

f(a+ z)− f(a+ 0)

z
= f ′(a+ 0)

が成り立つ.� �
証明. 適当な近傍に含まれる部分集合上で考えることにして, 簡単のために不連続点は
a のみとして考える. f は区分的にC1 級なので

f ′(a+ 0) = lim
x→a+0

f ′(x)

が存在するから

f ′(a) = f ′(a+ 0)

とおけば閉区間 I = [a, b]で f ′ は連続である. したがって連続関数は有界閉区間上におい
て一様連続なのでf ′は I = [a, b]で一様連続である. 任意のε > 0に対して δ0 = δ0(ε) > 0

が存在し |z − w| < δ0 をみたす任意の z, w ∈ I に対して

|f ′(z)− f ′(w)| < ε

2

が成り立つ. 任意の x0 ∈ (a, (a + b)/2) を固定する. このとき δ1 = δ1(ε) > 0 が存在し
0 < |z| < δ1 ならば適当な θ = θx0,z ∈ (0, 1) に対し∣∣∣∣f(x0 + z)− f(x0)

z
− f ′(x0)

∣∣∣∣ = |f ′(x0 + θz)− f ′(x0)| <
ε

2

が成り立つ. ここで, 平均値定理により
f(x0 + z)− f(x0)

z
= f ′(x0 + θz)
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となることを用いた. したがって適当な 0 < δ < min(δ0, δ1) が存在し
√
z2 + h2 < δ な

らば ∣∣∣∣f(a+ z + h)− f(a+ h)

z
− f ′(a+ 0)

∣∣∣∣
=

∣∣∣∣f(a+ z + h)− f(a+ h)

z
− f ′(a+ h) + f ′(a+ h)− f ′(a+ 0)

∣∣∣∣
=

∣∣∣∣f(a+ h+ z)− f(a+ h)

z
− f ′(a+ h) + f ′(a+ h)− f ′(a)

∣∣∣∣
≤
∣∣∣∣f(a+ h+ z)− f(a+ h)

z
− f ′(a+ h)

∣∣∣∣+ |f ′(a+ h)− f ′(a)| < ε.

ただし上の議論では a+h+ z ∈ I や a+h ∈ (a, (a+ b)/2)をみたすように適当に δ0, δ1, δ

を選んでいることに注意. 以上により 2変数関数の極限

lim
z→+0
h→+0

f(a+ z + h)− f(a+ h)

z

が存在し下のふたつの括弧の中身の収束先の関数が存在するから*1 極限の順序交換が可
能で

lim
z→+0

f(a+ z)− f(a+ 0)

z
= lim

z→+0

(
lim
h→+0

f(a+ z + h)− f(a+ h)

z

)
= lim

h→+0

(
lim
z→+0

f(a+ h+ z)− f(a+ h)

z

)
= f ′(a+ 0).

� �
注意 3. 上の証明の議論がわかりにくいと感じる場合は具体的に a = 0, I = [0, 1] の
場合に証明を考えてみれば良い. それだけで議論の本質は掴める.� �� �
定理 4. 周期 2π の関数 f は区分的にC1であるとする. このとき

S[f ](x) =
1

2
(f(x+ 0) + f(x− 0)) (x ∈ [−π, π])

が成り立つ. ここで片側極限 f(x± 0) = lim
y→±0

f(x+ y). とくに f が xにおいて連続
であれば S[f ](x) = f(x) となる.� �
証明. x ∈ [−π, π] として

IN(x) = SN [f ](x)−
1

2
(f(x+ 0) + f(x− 0))

*1 lim
h→+0

f(a+ z + h)− f(a+ h)

z
=

f(a+ z)− f(a)

z
, lim

z→+0

f(a+ z + h)− f(a+ h)

z
= f ′(a+ h).
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とおく. このとき ∫ π

0

DN(y)dy =

∫ 0

−π

DN(y)dy =
1

2

なので

IN(x) =

∫ 0

−π

DN(y)f(x− y)dy +

∫ π

0

DN(y)f(x− y)dy

− f(x+ 0)

∫ 0

−π

DN(y)dy − f(x− 0)

∫ π

0

DN(y)dy

=

∫ 0

−π

(f(x− y)− f(x+ 0))DN(y)dy +

∫ π

0

(f(x− y)− f(x− 0))DN(y)dy

=

∫ π

0

(f(x+ z)− f(x+ 0))DN(z)dz +

∫ 0

−π

(f(x+ z)− f(x− 0))DN(z)dz

を得る. ここで最後はDN が偶関数であることを用いた. さらにDN の別表現を用いて

IN(x) = (2π)−1

∫ π

0

(f(x+ z)− f(x+ 0))
sin((N + 1/2)z)

sin(z/2)
dz

+ (2π)−1

∫ 0

−π

(f(x+ z)− f(x− 0))
sin((N + 1/2)z)

sin(z/2)
dz.

g(z) =


f(x+ z)− f(x+ 0)

sin(z/2)
(z ∈ (0, π])

f(x+ z)− f(x− 0)

sin(z/2)
(z ∈ [−π, 0))

とおくと

lim
z→+0

g(z) = lim
z→+0

(
2 · f(x+ z)− f(x+ 0)

z
· z/2

sin(z/2)

)
= 2f ′(x+ 0),

lim
z→−0

g(z) = lim
z→−0

(
2 · f(x+ z)− f(x− 0)

z
· z/2

sin(z/2)

)
= 2f ′(x− 0).

したがって f が区分的にC1 なので g は区分的に連続である.

IN(x) = (2π)−1

∫ π

−π

g(z) sin((N + 1/2)z)dz

なのでリーマン・ルベーグの補題より

lim
N→∞

IN(x) = 0

が成り立つ. これで主定理を示すことができた.
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� �
注意 4. 第 1章で考えたフーリエ級数の問題点に対してこの定理はどの様にこた
えているのか考察してみよう. この定理によれば f が区分的に C1 級であればそ
のフーリエ級数は各点収束し, その収束先は一般には f ではなく片側極限の平均
(1/2)(f(·+0)+f(·−0)) である. とくに f が連続である様な点 a においてはS[f ](a)

は f(a) に各点収束するということである.� �
具体例におけるフーリエ級数の計算
ここではフーリエ級数の具体例をひとつだけ紹介しよう.

f(x) = |x| (x ∈ [−π, π])

で与えられる周期 2π の関数のフーリエ級数を考える. この関数は定理の仮定を満たし
ている. しかも連続関数であるから各点において f = S[f ] が成り立つ. 以下では実際に
計算することで S[f ] を求めてみよう. まずフーリエ変換を求めよう. k 6= 0 のとき

f̂(k) = (2π)−1/2

∫ π

−π

e−ikx|x|dx

=

√
2

π

∫ π

0

cos(kx)xdx

=

√
2

π

∫ π

0

(
sin(kx)

k

)′

xdx

=

√
2

π

([
sin(kx)

k
x

]π
0

−
∫ π

0

sin(kx)

k
dx

)
=

√
2

π

1

k2
[cos(kx)]π0

=

√
2

π

1

k2
(cos(kπ)− 1)

=

√
2

π

1

k2
((−1)k − 1)

となる. k = 0 のとき

f̂(k) = (2π)−1/2

∫ π

−π

|x|dx

=

√
2

π

∫ π

0

xdx

=

√
2

π

π2

2
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となる. 次にフーリエ級数を求めよう.

S[f ](x) = (2π)−1/2

∞∑
k=−∞

eikxf̂(k)

=
π

2
+

2

π

∞∑
k=0

cos(kx)
1

k2
((−1)k − 1)

=
π

2
− 4

π

∞∑
k=0

cos((2k + 1)x)

(2k + 1)2

となる. |x| = S[f ](x) なので x = 0 を代入すると

0 =
π

2
− 4

π

∞∑
k=0

1

(2k + 1)2

なので公式
∞∑
k=0

1

(2k + 1)2
=
π2

8

を得ることができる.
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第4章 L1におけるフーリエ変換

1 ≤ p <∞ に対して p乗可積分関数の空間 Lp = Lp(R) は

Lp(R) =

{
f : R → C; ‖f‖Lp =

(∫
R
|f(x)|pdx

)1/p

<∞

}

と定義される. L1 に属す関数のことを単に可積分関数と呼ぶことがある. また L∞ =

L∞(R) は

L∞(R) =
{
f : R → C; ‖f‖L∞ = ess. sup

x∈R
|f(x)| <∞

}
と定義される*1. Lp (1 ≤ p ≤ ∞) はバナッハ空間である*2.

次の定理が知られている.

ルベーグの収束定理� �
関数列 {fn}∞n=1 は lim

n→∞
fn(x) が各点 x ∈ R に対して存在しているとする. また

sup
n≥1

|fn(x)| ≤ g(x) (x ∈ R (a.e.))

をみたす g ∈ L1 が存在しているとする. このとき

lim
n→∞

∫
R
fn(x)dx =

∫
R
lim
n→∞

fn(x)dx

が成り立つ. パラメータが連続的に変化する場合も同様の収束定理が成り立つ.� �
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積分記号下における微分公式� �
開集合Ω ⊂ R として関数 f(t, x) ((t, x) ∈ Ω × R) は t ∈ Ω に対して f(t, ·) ∈ L1

x を
みたし

|∂tf(t, x)| ≤ g(x) (x ∈ R (a.e.))

なる g ∈ L1 が存在するとき, 以下の積分が変数 t に関して微分可能であり
d

dt

∫
R
f(t, x)dx =

∫
R
∂tf(t, x)dx

が成り立つ.� �
この資料では上述の定理は証明なしに用いることにする*3.

可積分関数のフーリエ変換

f ∈ L1 に対してフーリエ変換F : f 7→ f̂ とフーリエ逆変換F−1 : f 7→ f∨ はそれぞれ

f̂(ξ) = (2π)−1/2

∫
R
e−iξxf(x)dx (ξ ∈ R),

f∨(x) = (2π)−1/2

∫
R
eiξxf(ξ)dξ (x ∈ R)

と定義される.

� �
定理 5. f ∈ L1 ならば f̂ ∈ L∞ ∩ C(R) となり, さらに

sup
ξ∈R

∣∣∣f̂(ξ)∣∣∣ ≤ (2π)−1/2‖f‖L1

が成り立つ. f∨ についても同様.� �
証明. 任意の ξ ∈ R に対して∣∣∣f̂(ξ)∣∣∣ = ∣∣∣∣(2π)−1/2

∫
R
e−iξxf(x)dx

∣∣∣∣
≤ (2π)−1/2

∫
R

∣∣e−iξxf(x)
∣∣ dx

= (2π)−1/2‖f‖L1 .

*3証明については積分論に関する文献を参照すると良い.
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右辺は ξ に依存しない. 左辺の上限をとることで示すべき不等式が成り立つ. ξ0 ∈ R と
すると

f̂(ξ)− f̂(ξ0) = (2π)−1/2

∫
R

(
e−iξx − e−iξ0x

)
f(x)dx

であるが ∣∣(e−iξx − e−iξ0x
)
f
∣∣ ≤ 2|f | ∈ L1

なので右辺は ξ → ξ0 の極限で 0 に収束する.

具体例におけるフーリエ変換の計算
例 5. a > 0 とする. f(x) = χa(x), x ∈ R と定義する. ここで, 特性関数*4

χa(x) =

{
1 (|x| ≤ a)

0 (|x| > a)
.

明らかに f ∈ L1 である.

f̂(ξ) = (2π)−1/2

∫
R
e−iξxχa(x)dx

= (2π)−1/2

∫ a

−a

e−iξxdx

= (2π)−1/2

[
1

−iξ
e−iξx

]a
−a

= (2π)−1/2 1

iξ
(eiaξ − e−iaξ)

= (2π)−1/22 sin(aξ)

ξ

=

√
2

π

sin(aξ)

ξ

= a

√
2

π

sin(aξ)

aξ
.

*4切り落とし関数とか定義関数と呼ばれることもある.
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例 6. a > 0 とする. f(x) = e−a|x| (x ∈ R) と定義すると f ∈ L1 である.

f̂(ξ) = (2π)−1/2

∫
R
e−iξxe−a|x|dx

= (2π)−1/2

∫ 0

−∞
e−iξxeaxdx+ (2π)−1/2

∫ ∞

0

e−iξxe−axdx

= (2π)−1/2

∫ 0

−∞
e(a−iξ)xdx+ (2π)−1/2

∫ ∞

0

e−(a+iξ)xdx

= (2π)−1/2

([
1

a− iξ
e(a−iξ)x

]0
−∞

−
[

1

a+ iξ
e−(a+iξ)x

]∞
0

)

= (2π)−1/2

(
1

a− iξ
+

1

a+ iξ

)
=

√
2

π

a

a2 + ξ2
.

例 7 (ガウス関数). a > 0 とする.

Ga(x) = e−ax2

(x ∈ R)

と定義する. この形をした関数をガウス関数と呼ぶ. このときGa ∈ L1(R) であるから
以下では

Ĝa(ξ) = (2π)−1/2

∫
R
e−iξxe−ax2

dx (ξ ∈ R)

を求める. ここで注意したいのは Ĝa の具体的な式はまだわからないが存在することは
保証されているということである. Ga = e−ax2 の無限遠方での減衰の速さが x 7→ |x| の
増大の速さよりも速いので |x|Ga は可積分となり∣∣∣∂ξ(e−iξxe−ax2

)
∣∣∣ = |x|Ga ∈ L1(R)

なので積分記号下で微分が可能で
d

dξ

∫
R
e−iξxe−ax2

dx =

∫
R
∂ξ

(
e−iξxe−ax2

)
dx

となる. Ĝa の両辺を微分すると
dĜa

dξ
(ξ) = (2π)−1/2

∫
R
(−ix)e−iξxe−ax2

dx

= (2π)−1/2 i

2a

∫
R
e−iξx∂x

(
e−ax2

)
dx

= −(2π)−1/2 i

2a

∫
R
e−ax2

∂x
(
e−iξx

)
dx

= − ξ

2a
Ĝa(ξ).
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すなわち

dĜa

dξ
(ξ) = − ξ

2a
Ĝa(ξ)

を得る. この常微分方程式は解くことができ

Ĝa(ξ) = Ĝa(0)e
−ξ2/4a

となる. ここで

Ĝa(0) = (2π)−1/2

∫
R
e−ax2

dx =
1√
2a

なので

Ĝa(ξ) =
1√
2a
e−ξ2/4a.

Ĝa はF による像だから上に求めた関数が唯一の Ĝa として決まる. ここまでに得られ
た結果についてひとつ注意したいことはガウス関数をフーリエ変換したものはまたガウ
ス関数となることである. とくに a = 1/2 に対してはフーリエ不変である. すなわち

F [G1/2] = G1/2.

フーリエ変換の基本的な性質
y ∈ R に対して平行移動作用素 τy : L

1 → L1 を

(τyf)(x) = f(x+ y) (x ∈ R)

と定義する. a > 0 に対して伸長作用素Da : L
1 → L1 を

(Daf)(x) = f(ax) (x ∈ R)

と定義する. 複素共役を与える作用素 C : L1 → L1 を

(Cf)(x) = f(x) (x ∈ R)

と定義する. 引数の符号を変える作用素 T : L1 → L1 を

(Tf)(x) = f(−x) (x ∈ R)

と定義する. y ∈ R に対して掛け算作用素My : L
1 → L1 を

(Myf)(x) = eixyf(x) (x ∈ R)

と定義する.
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定理 6. y ∈ R, a > 0 とする. このとき

(1) F ◦ τy =My ◦ F .

(2) F ◦Da = a−1Da−1 ◦ F .

(3) F ◦ C = C ◦ F−1.

(4) F ◦ T = F−1.

証明. 計算練習も兼ねて自分で証明してみよう.
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第5章 フーリエ変換と微分および合
成積

フーリエ変換と微分� �
定理 7.

(1) f ∈ L1 ∩ C1(R) でさらに df/dx ∈ L1 であるとする. このとき

d̂f

dx
(ξ) = iξ · f̂(ξ) (ξ ∈ R).

(2) f ∈ L1 かつ ∫R |x||f(x)|dx <∞ のとき f̂ ∈ C1(R) となり

df̂

dξ
(ξ) = ̂(−ix · f)(ξ) (ξ ∈ R).

� �
証明. (1)

F [f ′] (ξ) = (2π)−1/2

∫
R
e−iξxf ′(x)dx

である. x > 0 とする. 一回連続微分可能な関数だから微積分の基本定理より

f(x) = f(0) +

∫ x

0

f ′(t)dt

と書くことができ f ′ ∈ L1 なので

lim
x→∞

|f(x)| = α ≥ 0

が存在する. α 6= 0 であれば ε = α/2 に対してM = M(ε) > 0 が存在し x ≥ M

ならば ∣∣|f(x)| − α
∣∣ < ε.

すなわち
α

2
< |f(x)| < 3α

2
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が成り立つので ∫ ∞

M

|f(x)|dx > α

2

∫ ∞

M

dx = ∞

となり可積分であることに反する. したがって α = 0. すなわち

lim
|x|→∞

|f(x)| = 0.

したがって ∫ R2

R1

e−iξxf ′(x)dx =
[
e−iξxf(x)

]R2

R1
−
∫ R2

R1

(−iξ)e−iξxf(x)dx

=
[
e−iξxf(x)

]R2

R1
+ iξ

∫ R2

R1

e−iξxf(x)dx

なので, R1 → −∞, R2 → ∞ とすることで

F [f ′] (ξ) = iξ · F [f ] (ξ) (ξ ∈ R)

を得る.

(2) ∫
R
∂ξ(e

−iξxf(x))dx =

∫
R
e−iξx(−ix)f(x)dx

であるが

|∂ξ(e−iξxf)| = |e−iξx(−ix)f | = |x||f | ∈ L1

なので積分記号下で微分ができ
d

dξ

∫
R
e−iξxf(x)dx =

∫
R
e−iξx(−ix)f(x)dx

となり定理の主張を得る.

� �
注意 5. この定理のいっていることは, 実空間Rx における f の微分はフーリエ空間
Rξ における f̂ の多項式倍に置き換わるということである. またフーリエ空間Rξ に
おける f̂ の微分はRx における f の多項式倍に置き換わる. この様な性質を持つの
でフーリエ変換は微分方程式やそれに関連する関数空間の研究において応用される.� �
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フーリエ変換と合成積
トネリの定理� �
F : R× R → R とする ∫

R
|F (x, y)|dy <∞

が x ∈ R (a.e.) で成り立ち ∫
R

(∫
R
|F (x, y)|dy

)
dx <∞

ならば F ∈ L1(R× R).� �
フビニの定理� �
F : R× R → R とする. F ∈ L1(R× R) であれば

F (·, y) ∈ L1
x(R) (y ∈ R (a.e.)) かつ

∫
R
F (x, ·)dx ∈ L1

y(R),

同様に
F (x, ·) ∈ L1

y(R) (x ∈ R (a.e.)) かつ
∫
R
F (·, y)dy ∈ L1

x(R)

が成り立ち∫
R

(∫
R
F (x, y)dx

)
dy =

∫
R

(∫
R
F (x, y)dy

)
dx =

∫
R

∫
R
F (x, y)dxdy.

� �
ふたつの可積分関数 f, g に対して

(f ∗ g)(x) =
∫
R
f(x− y)g(y)dy (x ∈ R)

を f, g の合成積という. たたみ込みと呼ぶこともある. 次の式

f ∗ g = g ∗ f

が成り立つ. 実際, x ∈ R を固定して考えると

(f ∗ g)(x) =
∫ ∞

−∞
f(x− y)g(y)dy

=

∫ −∞

∞
f(z)g(x− z)(−dz) (z = x− y)

=

∫ ∞

−∞
g(x− z)f(z)dz

= (g ∗ f)(x).
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� �
定理 8. f, g ∈ L1 ならば f ∗ g ∈ L1 となり

f̂ ∗ g = (2π)1/2f̂ · ĝ

が成り立つ.� �
証明.

F (x, y) = f(x− y)g(y) (x, y ∈ R)

とおくことにする. y ∈ R に対して∫
R
|F (x, y)|dx = |g(y)|

∫
R
|f(x− y)|dx = |g(y)|

∫
R
|f(x)|dx <∞

となるので ∫
R

(∫
R
|F (x, y)|dx

)
dy =

∫
R
|g(y)|dy

∫
R
|f(x)|dx <∞.

ここで y ∈ R に対して ∫
R
ψ(x− y)dx =

∫
R
ψ(x)dx

であることを用いた. これより F ∈ L1(R× R) と∫
R

(∫
R
|F (x, y)|dx

)
dy =

∫
R

(∫
R
|F (x, y)|dy

)
dx

がいえる. したがって∫
R
|(f ∗ g)(x)|dx =

∫
R

∣∣∣∣∫
R
f(x− y)g(y)dy

∣∣∣∣ dx
≤
∫
R

(∫
R
|f(x− y)g(y)| dy

)
dx

=

∫
R

(∫
R
|F (x, y)|dy

)
dx <∞.
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これで f ∗ g の可積分性がいえた. 次に積分順序の交換を行ないながら以下を得る

f̂ ∗ g(ξ) = (2π)−1/2

∫
R
e−iξx(f ∗ g)(x)dx

= (2π)−1/2

∫
R
e−iξx

(∫
R
f(x− y)g(y)dy

)
dx

= (2π)−1/2

∫
R
g(y)

(∫
R
e−iξxf(x− y)dx

)
dy

= (2π)−1/2

∫
R
e−iξyg(y)

(∫
R
e−iξ(x−y)f(x− y)dx

)
dy

= (2π)1/2(2π)−1/2

∫
R
e−iξyg(y)

(
(2π)−1/2

∫
R
e−iξxf(x)dx

)
dy

= (2π)1/2(2π)−1/2

∫
R
e−iξyg(y)dy(2π)−1/2

∫
R
e−iξxf(x)dx

= (2π)1/2
(
f̂ · ĝ

)
(ξ).
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第6章 熱核およびL1における反転公式

ここでは以下のふたつの事実を用いる. これらも前章までと同様に証明なしに用いる.

ヘルダー不等式� �
1 ≤ p ≤ ∞と 1 ≤ q ≤ ∞は 1/p+1/q = 1をみたすとする. このとき f ∈ Lp, g ∈ Lq

に対して ∫
R
|f(x)g(x)|dx ≤ ‖f‖Lp‖g‖Lq

が成り立つ. ただし p = ∞ のときは q = 1 とする.� �� �
1 ≤ p <∞ とする. f ∈ Lp ならば

lim
y→0

∫
R
|f(x+ y)− f(x)|pdx = 0

が成り立つ.� �
熱核
この後の章における議論で用いるので熱核を導入する. t > 0 として

Ut(x) = (4πt)−1/2e−x2/4t (x ∈ R)

を熱核という*1. ガウス積分を思い出せば∫
R
Ut(x)dx = 1

であることがわかる. これがなぜ熱核と呼ばれるかというと熱方程式の初期値問題{
∂tu−∆u = 0,

u(·, 0) = ϕ ∈ Lp

の解は

u(x, t) = (Ut ∗ ϕ) (x) = (4πt)−1/2

∫
R
e−(x−y)2/4tϕ(y)dy, t > 0 (x ∈ R)

*1ガウス核ともいう.



40 第 6章 熱核および L1における反転公式

で与えられるからである. 熱核は以下の性質を持つ. これは熱方程式の解の振る舞いと
解釈することも出来るが後に反転公式の証明において重要な役割を果たす.� �
定理 9. 1 ≤ p <∞ とする. f ∈ Lp に対して

ft(x) =

∫
R
Ut(x− y)f(y)dy, x ∈ R

は

lim
t→+0

‖ft − f‖Lp = 0

を満たす.� �
証明. まず 1 < p <∞ のとき∣∣∣∣∫

R
Ut(x− y)f(y)dy

∣∣∣∣ ≤ (4πt)−1/2

∫
R
e−(x−y)2/4t|f(y)|dy

≤ (4πt)−1/2

∫
R
e−(x−y)2/4t|f(y)|dy

≤ (4πt)−1/2
∥∥∥e−(x−y)2/4t

∥∥∥
Lq
y

‖f‖Lp <∞.

ここで 1 < q <∞ は 1/p+ 1/q = 1 をみたす. p = 1 のとき∣∣∣∣∫
R
Ut(x− y)f(y)dy

∣∣∣∣ ≤ (4πt)−1/2

∫
R
e−(x−y)2/4t|f(y)|dy

≤ (4πt)−1/2

∫
R
e−(x−y)2/4t|f(y)|dy

≤ (4πt)−1/2‖f‖L1 <∞.

したがって t > 0 に対して ft は積分として適切に定義されている. 1 < p <∞ のときに

Ut(y) = Ut(y)
1/qUt(y)

1/p

としてヘルダー不等式を用いて

|ft(x)− f(x)|p ≤
(∫

R
Ut(y)

1/qUt(y)
1/p|f(x− y)− f(x)|dy

)p

≤
(
‖Ut‖1/qL1

∥∥∥U1/p
t |f(x− ·)− f(x)|

∥∥∥
Lp

)p
=

∫
R
Ut(y)|f(x− y)− f(x)|pdy

となる. これを x に関して積分して∫
R
|f(x− y)− f(x)|pdx ≤ 2p+1‖f‖pLp <∞
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が成り立つので*2 積分順序の交換ができ∫
R
|ft(x)− f(x)|pdx ≤

∫
R
Ut(y)

(∫
R
|f(x− y)− f(x)|pdx

)
dy

が成り立つ. 任意の ε > 0 に対して δ = δ(ε) > 0 が存在し

sup
|y|<δ

∫
R
|f(x− y)− f(x)|pdx < ε

となる. したがって∫
R
|ft(x)− f(x)|pdx ≤

∫
{|y|<δ}∪{|y|>δ}

Ut(y)

(∫
R
|f(x− y)− f(x)|pdx

)
dy

≤ ε

∫
|y|<δ

Ut(y)dy + 2p+1‖f‖pLp

∫
|y|>δ

Ut(y)dy

≤ ε+ 2p+1‖f‖pLp

∫
|y|>δ

Ut(y)dy.

この不等式は p = 1 のときにも成り立つ. ここで最後の項は y2 = 4tz と置き換えると∫
|y|>δ

Ut(y)dy =

∫
|y|>δ

(4πt)−1/2e−y2/4tdy

= 2

∫ ∞

δ

(4πt)−1/2e−y2/4tdy

=
1√
π

∫ ∞

δ2/4t

1√
z
e−zdz

≤ 2
√
t

δ

∫ ∞

0

e−zdz

→ 0 (t→ +0).

以上より

lim
t→+0

‖ft − f‖Lp = 0

を満たす.

反転公式

*2|f(x − y) − f(x)|p ≤ (|f(x− y)|+ |f(x)|)p ≤ (2max(|f(x− y)|, |f(x)|))p = 2p max(|f(x −
y)|p, |f(x)|p) ≤ 2p (|f(x− y)|p + |f(x)|p)
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まず反転公式という言葉の意味について説明する. 関数 f に対して

f(x) = (2π)−1/2

∫
R
eiξxf̂(ξ)dξ (x ∈ R)

すなわち

F−1F [f ] = FF−1[f ] = f

が成り立つとき, この式を反転公式とよぶ. すなわちフーリエ変換とフーリエ逆変換を
続けて作用させると元に戻るということである.

F−1F [f ] = f が成り立てば FF−1[f ] = f も成り立つ. フーリエ変換とフーリエ逆変
換はその定義において e±iξx の格好をした指数関数の肩の符号が異なるだけなので積分
変換として捉えた場合は本質的に同じものである. もちろん同時に扱う場合は両者を混
同しない様に注意が必要である.

反転公式はどんな関数に対しても成り立つことが保証されているわけではない. ここ
まではフーリエ変換はL1 において定義している. L1 の関数がフーリエ変換を施した後
も L1 であるとも限らないのでフーリエ変換を施したあとにフーリエ逆変換を定義する
ことすらできるかわからない. 実はL1 においてそのフーリエ変換もL1 であれば反転公
式が成り立つ. この章ではその様な L1 における反転公式を熱核を用いて証明する.� �
定理 10. f ∈ L1 かつ f̂ ∈ L1 ならば反転公式F−1F [f ] = FF−1[f ] = f が成り立つ.� �
証明. t > 0 として

ft(x) = (2π)−1/2

∫
R
eixξe−tξ2 f̂(ξ)dξ (x ∈ R)

を考える. このとき

ft(x) = (2π)−1/2

∫
R
eixξe−tξ2 f̂(ξ)dξ

= (2π)−1/2

∫
R
eixξe−tξ2(2π)−1/2

∫
R
e−iξyf(y)dydξ

= (2π)−1/2

∫
R

(
(2π)−1/2

∫
R
ei(x−y)ξ−tξ2dξ

)
f(y)dy

ここでガウス関数のフーリエ変換の結果より

(2π)−1/2

∫
R
ei(x−y)ξ−tξ2dξ = F−1

[
e−tξ2

]
(ζ)
∣∣∣
ζ=x−y

=
1√
2t
e−(x−y)2/4t
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なので

ft(x) =

∫
R
Ut(x− y)f(y)dy

となる. 前章における熱核の性質より

lim
t→+0

∫
R
|ft(x)− f(x)|dx = 0

である. したがって数列 {tn} で tn → +0 (n→ ∞) なるものに対しても

lim
n→∞

∫
R
|ftn(x)− f(x)|dx = 0.

またルベーグの収束定理を用いて各点収束の意味で

lim
t→+0

ft(x) = (2π)−1/2

∫
R
eixξf̂(ξ)dξ.

一方でルベーグ積分論においてよく知られた定理によって部分列 {tnk
} で tnk

→ 0 (k →
∞) なるものを引き抜いて

lim
k→∞

ftnk
(x) = f(x) (x ∈ R (a.e.))

となる. したがって極限値の一意性より

f(x) = (2π)−1/2

∫
R
eixξf̂(ξ)dξ

が x ∈ R (a.e.) に対していえたことになる.





45

第7章 急減少関数, フリードリックスの
軟化子I

急減少関数
集合

S(R) =
{
φ ∈ C∞(R); ∀k,m ∈ N ∪ {0}. ∃Ck,m > 0 : sup

x∈R
(1 + |x|)m

∣∣φ(k)(x)
∣∣ ≤ Ck,m

}
を急減少関数の空間という.

ここでは S(R) の位相を紹介しないが適当な意味における位相も定まる.� �
定理 11. 任意の 1 ≤ p ≤ ∞ に対して S(R) ⊂ Lp である.� �
証明. 任意の 1 ≤ p ≤ ∞ とする. φ ∈ S(R) とする. (k,m) = (0, 2) とする. このとき
C0,2 > 0 が存在し

|φ(x)| ≤ C0,2

(1 + |x|)2

が任意の x ∈ R に対して成り立つので φ ∈ L1 ∩ L∞ ⊂ Lp.

この定理より S(R) においてフーリエ変換を積分として定義することができる.

急減少関数のフーリエ変換

f ∈ S(R) に対してフーリエ変換F : f 7→ f̂ とフーリエ逆変換F−1 : f 7→ f∨ はそれ
ぞれ

f̂(ξ) = (2π)−1/2

∫
R
e−iξxf(x)dx (ξ ∈ R),

f∨(x) = (2π)−1/2

∫
R
eiξxf(ξ)dξ (x ∈ R)

と定義される.
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次のことが言える� �
定理 12. F とF−1 は S(R) から S(R) への全単射写像である. さらに f ∈ S(R) に
対して反転公式F−1F [f ] = FF−1[f ] = f が成り立つ.� �
証明. L1 におけるフーリエ変換の結果を適用して φ̂ ∈ C∞(R) で

dkφ̂

dξk
= ̂(−ix)kφ

となることがわかる. 同様に

(iξ)m
dkφ̂

dξk
= F

[
dm

dxm
(
(−ix)kφ

)]
となる. 急減少関数の空間の定義の仕方から

dm

dxm
(
(−ix)kφ

)
∈ S(R) ⊂ L1

がわかるので F : S(R) → S(R) である. これはフーリエ逆変換についても同様であ
る. L1 における反転公式が成り立つので S(R) においても反転公式が成り立つ. 任意の
φ ∈ S(R) に対して

v = F−1[φ] ∈ S(R)

は反転公式より v̂ = φ を満たすので全射である. φ̂ = ψ̂ とすると
̂(φ− ψ) = 0

なのでフーリエ逆変換をとると

φ− ψ = F−1[0] = (2π)−1/2

∫
R
eiξx · 0dξ = 0.

これは単射であることを意味する.

開球
中心 a ∈ R, 半径 r > 0 の開球を

Br(a) = {x ∈ R; |x− a| < r}

と定義する.

局所可積分関数
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開区間 I ⊂ R とする. 任意の有界集合K ⊂ I において可積分な関数 f : I → C を局
所可積分であるといい, 局所可積分な関数全体の集合を L1

loc(I)とかく.

関数の台1

開区間 I ⊂ R とする. 連続関数 f : I → R に対して

supp f = {x ∈ I; f(x) 6= 0}

を台という. ここでA はA ⊂ R の閉包である.

A ⊂ Rの閉包は A =

{
x ∈ R; {xj}∞j=1 ⊂ A が存在し lim

j→∞
xj = x

}
と特徴づけられ

ることが知られている. 例えば A = (0, 1) については A = [0, 1] である. {xj} =

{1 − 1/2j} ⊂ (0, 1) は xj → 1 (j → ∞) を満たす. また {yj} = {1/2j} ⊂ (0, 1) は
yj → 0 (j → ∞) を満たす.

開区間 I ⊂ R に対してC∞
0 (I) は I においてコンパクトな台をもつ無限回連続微分可

能な関数の全体として定義される. すなわち

C∞
0 (I) = {φ ∈ C∞(R); 有界集合K ⊂ Iが存在し supp φ ⊂ K}

と定義する.

関数の台2

一般の可測関数に対する台は上の様な定義では都合が悪い. 実際に有理数上の特性
関数

χQ(x) =

{
1 (x ∈ Q)

0 (x ∈ R \Q)

を考えると {x ∈ R; χQ(x) 6= 0} = Q = R となってしまい台として意図するものと異な
る. そこで局所可積分関数に対して次の様な定義を与える.

I ⊂ R を開区間とする. f ∈ L1
loc(I) に対して supp f はその補集合を次の様に定める

ことで定義する. a 6∈ supp f は ϵ > 0 が存在し（ここで ϵ > 0 はBϵ(a) ⊂ I をみたす様
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に選んでいる）任意の φ ∈ C∞
0 (Bϵ(a)) に対して∫

I

f(x)φ(x)dx = 0

が成り立つものとする.

I = R とする. 任意の a ∈ R とする. 任意の ϵ > 0 と φ ∈ C∞
0 (Bϵ(a)) に対して∫

R
χQ(x)φ(x)dx =

∫
Q∩Bϵ(a)

φ(x)dx = 0

である. したがって, supp χQ = ∅. ここでQ はルベーグ測度の意味で零集合であるこ
とに注意.

フリードリックスの軟化子の導入� �
補題 6. φ : R → R を

φ(t) =

{
e−1/t (t > 0)

0 (t ≤ 0)

と定義する. このとき φ ∈ C∞(R) で φ(n)(0) = 0 (n ≥ 1) をみたす.� �
証明. x 6= 0 で無限回微分可能であることは明らかである.

dn

dxn
e−1/x = x−2nPn(x)e

−1/x

の形になる. ここで P (x) は x の n− 1 次多項式である*1. したがって

lim
x→+0

φ(n)(x) = lim
x→+0

dn

dxn
e−1/x = 0 (n ≥ 0)

であることがわかる. 次に x = 0 において n 回微分可能で φ(n)(0) = 0 であることを数
学的帰納法で示そう. まず n = 1 のときは h > 0 とすると, 平均値定理より 0 < ch < h

が存在し
φ(h)− φ(0)

h
= φ′(ch) → 0 (h→ +0)

*1よくわからなければ実際に 2回か 3回ぐらい微分してみれば良い.
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であるから x = 0 で微分可能でφ′(0) = 0. n ≥ 1 で正しいとして n+ 1 のときを考える.

すなわち φ(n)(0) = 0 が成り立っているとする. このとき h > 0 とすると平均値定理よ
り 0 < dh < h が存在し

φ(n)(h)− φ(n)(0)

h
= φ(n+1)(dh) → 0 (h→ +0)

なので φ(n) は x = 0 で微分可能で φ(n+1)(0) = 0. 上の議論で h < 0, h → −0 を考え
る場合は φ(n)(h) = 0 であるから同じ結果を得る. 以上により任意の n ≥ 1 に対して
φ(n)(0) = 0.

ここでの話題に直接の関係はないがφ はテイラー展開可能でない関数のひとつの例と
しても知られる. 実際, 原点近傍でテイラー展開できたとすると φ(t) 6= 0 (t > 0) であ
るが

φ(t) =
∞∑
k=0

φ(k)(0)

k!
tk = 0

となり矛盾するからである. 上の定理より関数

f(x) = φ(1− |x|2) (x ∈ R)

は f ∈ C∞(R) で f(x) = 0, |x| ≥ 1 を満たす. ρ ∈ C∞(R) で∫
R
ρ(x)dx = 1,

ρ ≥ 0, supp ρ ⊂ {x ∈ R; |x| ≤ 1}

を満たすものを考える. この様な関数は実際に存在する. 例えば上で定義した f に対し
て ρ = Cf がその例である. ここで定数C =

(∫
R φ(1− |x|2)dx

)−1
. 次に

ρϵ(x) = ϵ−1ρ
(x
ϵ

)
(x ∈ R, ϵ > 0)

とおくと ∫
R
ρϵ(x)dx = 1

となる. 1 ≤ p <∞ として f ∈ Lp に対して

(ρϵ ∗ f)(x) =
∫
R
ρϵ(x− y)f(y)dy (x ∈ R)

とする. このとき作用素: f 7→ ρϵ ∗ f のことをフリードリックスの軟化子と呼ぶ. フリー
ドリックスの軟化子が持つ重要な性質について次の章で詳しく述べる.
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第8章 フリードリックスの軟化子II

� �
定理 13. 1 ≤ p <∞ とする. f ∈ Lp とする. このとき ϵ > 0 に対して以下の (1), (2)

と ϵ→ 0 の極限 (3) が成り立つ.

(1) ‖ρϵ ∗ f‖Lp ≤ ‖f‖Lp

(2) ρϵ ∗ f ∈ C∞(R) かつ (ρϵ ∗ f)(k) = ρ
(k)
ϵ ∗ f (k ∈ N ∪ {0})

(3) ‖ρϵ ∗ f − f‖Lp → 0 (ϵ→ 0)� �
証明. (1) p > 1 として 1/p+ 1/q = 1 とする. ヘルダー不等式を用いて

|(ρϵ ∗ f)(x)|p =
∣∣∣∣∫

R
ρϵ(x− y)f(y)dy

∣∣∣∣p
=

∣∣∣∣∫
R
ρϵ(x− y)1/qρϵ(x− y)1/pf(y)dy

∣∣∣∣p
≤
∫
R
ρϵ(x− y)|f(y)|pdy.

この両辺を x で積分すると∫
R
| (ρϵ ∗ f) (x)|pdx ≤

∫
R

∫
R
ρϵ(x− y)dx|f(y)|pdy

= ‖f‖pLp .

p = 1 のときは直ちに同様の評価式を得られる. 以上より求める不等式が示された.

(2) a ∈ R を任意に固定する. 0 < |h| < 1 とすると
(ρϵ ∗ f)(a+ h)− (ρϵ ∗ f)(a)

h
=

∫
R

ρϵ(a+ h− y)− ρϵ(a− y)

h
f(y)dy

=

∫
R
ρ′ϵ(a+ θh− y)f(y)dy

=

∫
0≤|y|≤ϵ+|a|+1

ρ′ϵ(a+ θh− y)f(y)dy.

ここで, 2番目の等式において被積分関数に対し θ = θh,y ∈ (0, 1) が存在して, 平均値定
理が成り立つことを用いた. また supp ρϵ ⊂ {x ∈ R; |x| ≤ ϵ} なので |y| = |a+ θh− y−
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(a+ θh)| ≤ ϵ+ |a|+ 1 と評価した. 最後の式の ρ′ϵ(a+ θh− y) は h, y に関して一様に有
界で

|ρ′ϵ(a+ θh− ·)f | ≤M |f | ∈ L1
(
Bϵ+|a|+1(0)

)
.

したがって

lim
h→0

(ρϵ ∗ f)(a+ h)− (ρϵ ∗ f)(a)
h

= lim
h→0

∫
0≤|y|≤ϵ+|a|+1

ρ′ϵ(a+ θh− y)f(y)dy

=

∫
0≤|y|≤ϵ+|a|+1

lim
h→0

ρ′ϵ(a+ θh− y)f(y)dy

=

∫
0≤|y|≤ϵ+|a|+1

ρ′ϵ(a− y)f(y)dy

=

∫
R
ρ′ϵ(a− y)f(y)dy.

すなわち

(ρϵ ∗ f)′(a) = (ρ′ϵ ∗ f)(a)

となる. 上の議論では ϵ > 0 は固定されていて ρϵ ∈ C∞
0 (R) ということしか用いてい

ないので上の議論を何回でも繰り返すことが可能である. したがって a の任意性により
ρϵ ∗ f ∈ C∞(R).
(3) 1 < p <∞ とする. (1) のときと同じ様に

(ρϵ ∗ f) (x)− f(x) =

∫
R
ρϵ(x− y)f(y)dy −

∫
R
ρϵ(y)f(x)dy

=

∫
R
ρϵ(y)f(x− y)dy −

∫
R
ρϵ(y)f(x)dy

=

∫
R
ρϵ(y)(f(x− y)− f(x))dy

=

∫
R
ρϵ(y)

1/qρϵ(y)
1/p(f(x− y)− f(x))dy

を得るので, ヘルダー不等式を用いて∫
R
| (ρϵ ∗ f) (x)− f(x)|pdx ≤

∫
R

∫
R
ρϵ(y)dy|f(x− y)− f(x)|pdx

=

∫
0≤|y|≤ϵ

ρϵ(y)

∫
R
|f(x− y)− f(x)|pdxdy

任意の η > 0 に対して δ = δ(η) > 0 が存在し |y| < δ ならば∫
R
|f(x− y)− f(x)|pdx < η
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なので 0 < ϵ < δ に対して∫
R
| (ρϵ ∗ f) (x)− f(x)|pdx ≤

∫
0≤|y|≤ϵ

ρϵ(y)

∫
R
|f(x− y)− f(x)|pdxdy

< η

∫
0≤|y|≤ϵ

ρϵ(y)dy

≤ η.

p = 1 のときも同様.� �
定理 14. 1 ≤ p < ∞ とする. C∞

0 (R) は Lp において稠密である. すなわち任意の
f ∈ Lp と任意の ε > 0 に対して φ ∈ C∞

0 (R) が存在し

‖f − φ‖Lp < ε

が成り立つ.� �
証明. カットオフ関数

χR(x) =

{
1 (|x| ≤ R)

0 (|x| > R)

とする. このとき lim
R→∞

‖f − χRf‖Lp = 0 なので*1 任意の η > 0 に対して L = L(η) > 0

が存在しR ≥ L ならば

‖f − χRf‖Lp <
η

2

が成り立つ. とくにR = L に対して成り立つ. ψϵ,L = ρϵ ∗ (χLf) とすると δ = δ(η) > 0

が存在し 0 < ϵ < δ ならば

‖ψϵ,L − χLf‖Lp <
η

2

が成り立つ. したがって 0 < ϵ < min(1, δ) に対して

‖ψϵ,L − f‖Lp ≤ ‖ψϵ,L − χLf‖Lp + ‖f − χLf‖Lp

< η

*1x ∈ R とする. 任意の ε > 0 に対して |x| ≤ M なる M = M(x) > 0 が存在し R ≥ M なら
ば |χR(x)f(x) − f(x)| = 0 < ε が成り立つので各点収束の意味で χR(x)f(x) → f(x) (R → ∞). また
|χRf − f |p ≤ (|χRf | + |f |)p ≤ 2p|f |p ∈ L1, なのでルベーグ収束定理より ∫R |χR(x)f(x) − f(x)|pdx →
0 (R → ∞).
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となる. またψϵ,L ∈ C∞(R)かつ supp ψϵ,L ⊂ {x ∈ R; |x| ≤ 1+L}なので*2 ψϵ,L ∈ C∞
0 (R)

ということになる. 以上よりC∞
0 (R) は Lp において稠密である.� �

注意 6. この定理における稠密性について C∞
0 (R)

Lp

= Lp と表すこともできる. こ
の記号は Lp の位相で閉包をとるという意味であることに注意.� �

C∞
0 (R) ⊂ S(R) ⊂ Lp なので直ちに以下の事実を得る.� �
定理 15. 1 ≤ p < ∞ とする. S(R) は Lp において稠密である. すなわち任意の
f ∈ Lp と任意の ε > 0 に対して φ ∈ S(R) が存在し

‖f − φ‖Lp < ε

が成り立つ.� �
証明. 任意のf ∈ Lpと任意のε > 0に対してφ ∈ C∞

0 (R) ⊂ S(R)が存在し‖φ−f‖Lp < ε

が成り立つ.

以下の命題は重要なので紹介しておこう.

リーマン・ルベーグの補題� �
定理 16. f ∈ L1 とする. このとき lim

|ξ|→∞
f̂(ξ) = 0 が成り立つ.

� �
証明. 任意の ε > 0 とする. f にL1ノルムで収束する点列 {φn} ⊂ S(R) が存在する. す
なわちN = N(ε) ≥ 1 が存在し n ≥ N ならば

‖f − φn‖L1 <
ε

2
(2π)1/2

が成り立つ. とくにn = N に対して成り立つ. {φ̂n} ⊂ S(R)なのでC0,1 > 0が存在して

|φ̂N(ξ)| ≤
C0,1

1 + |ξ|

が任意の ξ ∈ R に対して成り立つ. したがってM = M(ε,N) > 0 が存在し |ξ| ≥ M な
らば

|φ̂N(ξ)| <
ε

2
.

*2|x| > ϵ ならば ρϵ(x) = 0 である. また (ρϵ ∗ (χLf)) (x) =
∫
0≤|y|≤L

ρϵ(x− y)f(y)dy となる. したがっ
て |y| ≤ L と考えれば良いので |x| > L+ ϵ とすれば

∣∣|a| − |b|
∣∣ ≤ |a− b| という不等式を用いて

|x− y| ≥ |x| − |y|
> L+ ϵ− L

= ϵ

となり (ρϵ ∗ χL) (x) = 0 となる.
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以上よりN ≥ 1 を固定しておき |ξ| ≥M ならば∣∣∣f̂(ξ)∣∣∣ = ∣∣∣f̂(ξ)− φ̂N(ξ) + φ̂N(ξ)
∣∣∣

≤ (2π)−1/2 ‖f − φN‖L1 + |φ̂N(ξ)|
< ε.
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第9章 L2におけるフーリエ変換I

L2＝ L2(R) の内積は

(f, g)L2 =

∫
R
f(x)g(x)dx

と定義される.

� �
定理 17. φ, ψ ∈ S(R) に対して

(φ̂, ψ)L2 = (φ, ψ∨)L2 ,

(φ∨, ψ)L2 =
(
φ, ψ̂

)
L2
.

が成り立つ. とくに

‖φ̂‖L2 = ‖φ‖L2 ,

‖φ∨‖L2 = ‖φ‖L2 .� �
証明. (φ̂, ψ)L2 = (φ, ψ∨)L2 だけ示せば十分である. 積分順序を交換できるので

(φ̂, ψ)L2 =

∫
R

(
(2π)−1/2

∫
R
e−iξxφ(x)dx

)
ψ(ξ)dξ

=

∫
R
φ(x)(2π)−1/2

∫
R
eiξxψ(ξ)dξdx

=

∫
R
φ(x)(2π)−1/2

∫
R
eiξxψ(ξ)dξdx

= (φ, ψ∨)L2 .

この定理より φ, ψ ∈ S(R) に対して∫
R
φ̂(ξ)ψ(ξ)dξ =

∫
R
φ(x)ψ̂(x)dx.

となることがわかる*1.

*1緩増加超関数のフーリエ変換を定義するときにこの式を手本とする.



58 第 9章 L2におけるフーリエ変換 I

L2におけるフーリエ変換の定義
任意に f ∈ L2 を選ぶ. 稠密性により {φn} ⊂ S(R) が存在し L2ノルムで f に収束す
る. このとき {φ̂n} ⊂ S(R) について

‖φ̂n − φ̂m‖L2 = ‖φn − φm‖L2 → 0 (n,m→ ∞)

なので {φ̂n} は L2 におけるコーシー列である. L2 は完備なので v ∈ L2 が存在し

lim
n→∞

‖φ̂n − v‖L2 = 0

となる. そこでこの極限点 v ∈ L2 を f のフーリエ変換と定義する. つまり

f ∈ L2 に対して L2 で収束する点列 {φn} ⊂ S(R) を用いてフーリエ変換F : f 7→ f̂

を

lim
n→∞

‖v − φ̂n‖L2 = 0

なるものとして v = f̂ によって定義する. フーリエ逆変換も同じ様に定義する.

� �
定理 18. f ∈ L2 のフーリエ変換は f に収束する点列の選び方によらない.� �
証明. {φn}, {ψn} ⊂ S(R) をふたつの f に収束する点列とする. これらのフーリエ変換
がそれぞれ v とw に収束するとする.

‖v − w‖L2 =
∥∥∥v − φ̂n + φ̂n − w + ψ̂n − ψ̂n

∥∥∥
L2

≤ ‖v − φ̂n‖L2 +
∥∥∥ψ̂n − w

∥∥∥
L2

+
∥∥∥φ̂n − ψ̂n

∥∥∥
L2

→ 0 (n→ ∞).

したがって v − w = 0 (a.e. R).

積分で定義されたフーリエ変換が線形であることは明らかであるが, 以下では L2 に
おけるフーリエ変換の線形性が証明される.� �
定理 19. F : L2 → L2 は線形作用素である. すなわち f, g ∈ L2, α, β ∈ C に対して

F [αf + βg] = αF [f ] + βF [g]

が成り立つ.� �
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証明. まずF は上の議論でL2 におけるコーシー列の極限点として定義されているので
L2 → L2 の作用素であることを注意しておこう. 点列 {φn}, {ψn} ⊂ S(R) が L2ノルム
で φn → f, ψn → g ならば同じく φn + ψn → f + g なので f̂ + g は

lim
n→∞

∥∥∥v − ( ̂φn + ψn

)∥∥∥
L2

= 0

なる極限点として定義される.

̂φn + ψn = φ̂n + ψ̂n → f̂ + ĝ (n→ ∞)

なので

f̂ + g = f̂ + ĝ (a.e. R)

である. 同じ様にして

(̂α · f) = α · f̂ (a.e. R).

すなわちフーリエ変換は L2 における線形作用素である.� �
定理 20. f ∈ L2 に対して, 反転公式F−1F [f ] = FF−1[f ] = f が成り立つ.� �
証明. f ∈ L2 にL2ノルムで収束する点列を {φn} ⊂ S(R) とする. このときフーリエ変
換の定義より {φ̂n} ⊂ S(R) は f̂ に収束する点列である.

(
f̂
)∨
は (φ̂n)

∨ の極限として定
義される. 急減少関数に対しては反転公式が成り立ち (φ̂n)

∨ = φn であり φn は f に収
束するので極限点の一意性*2より

(
f̂
)∨

= f (a.e. R).

*2f, g ∈ L2 を {fn} ⊂ L2 のふたつの極限点とすると

‖f − g‖L2 = ‖f − fn + fn − g‖L2

≤ ‖f − fn‖L2 + ‖fn − g‖L2

→ 0 (n → ∞)

となるので.
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第10章 L2におけるフーリエ変換II

この章では以下の定理を用いる.

単調収束定理� �
関数列 {fn}∞n=1 は fn ≥ 0 かつ fn(x) ↗ f(x), x ∈ R (a.e.), (n→ ∞) であるとする.

このとき

lim
n→∞

∫
R
fn(x)dx =

∫
R
f(x)dx

が成り立つ.� �
L2 におけるフーリエ変換について以下の性質が成り立つ. パーセバルの等式とかL2 に
おけるフーリエ変換のユニタリ性と呼ばれることもある.� �
定理 21. f, g ∈ L2 に対して (

f̂ , g
)
L2

= (f, g∨)L2 ,

(f∨, g)L2 = (f, ĝ)L2 .

が成り立つ. とくに ∥∥∥f̂∥∥∥
L2

= ‖f‖L2 ,

‖f∨‖L2 = ‖f‖L2 .� �
証明. f, g ∈ L2 とする. {φn}, {ψn} ⊂ S(R) をそれぞれ f, g に収束する点列とする. こ
のとき, ヘルダー不等式（コーシー・シュワルツの不等式）より

|(f, g∨)L2 − (φn, ψn
∨)L2 | = |(f, g∨ − ψn

∨)L2 + (f − φn, ψn
∨)L2 |

≤ ‖f‖L2 ‖g∨ − ψn
∨‖L2 + ‖f − φn‖L2 ‖ψn

∨‖L2

→ 0 (n→ ∞)

が成り立つ. ここで∣∣∣ ‖ψn
∨‖L2 − ‖g∨‖L2

∣∣∣ ≤ ‖ψn
∨ − g∨‖L2 → 0 (n→ ∞)

なので {‖ψn
∨‖} ⊂ R は収束列であるから有界であることに注意. 以上より
(φ̂n, ψ)L2 − (f, g∨)L2 = (φ, ψn

∨)L2 − (f, g∨)L2 → 0 (n→ ∞).
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一方, 左辺は
(φ̂n, ψ)L2 − (f, g∨)L2 →

(
f̂ , g
)
L2

− (f, g∨)L2 (n→ ∞).

すなわち極限値の一意性より (
f̂ , g
)
L2

− (f, g∨)L2 = 0.

� �
定理 22. F : L2 → L2 は全単射である.� �
証明. f, g ∈ L2とする. F [f ] = F [g]とすると f̂ − g = 0 (a.e. R)なので0 =

∥∥∥f̂ − g
∥∥∥
L2

=

‖f − g‖L2 . よって f = g (a.e. R) なので単射である. 次に全射であることを示していく.

g ∈ L2 とする. {ψn} ⊂ S(R) を g に収束する点列とする. φn = ψn
∨ とおく. このとき

‖φn − φm‖L2 = ‖ψn
∨ − ψm

∨‖L2 → 0 (n,m→ ∞)

なので
lim
n→∞

‖φn − f‖L2 = 0

なる f ∈ L2 が存在する.

‖φn − f‖L2 =
∥∥∥φ̂n − f̂

∥∥∥
L2

=
∥∥∥ψn − f̂

∥∥∥
L2

→ 0 (n→ ∞)

したがってF [f ] = f̂ = g (a.e. R) となり全射であることが示された.

L2におけるフーリエ変換の表示
L2 の関数は必ずしも可積分でないことに注意しよう. 実際, 関数

f(x) = (1 + |x|)−2/3, x ∈ R

は f ∈ L2 かつ f 6∈ L1 である. L1 や S(R) においてはフーリエ変換は積分として具体
的な表示をもって定義されていた. ところが L2 におけるフーリエ変換は急減少関数の
フーリエ変換の極限として定義されているので具体的な表示がどの様なものかわからな
い. 以下の定理はその様な疑問にこたえるものである.� �
定理 23. f ∈ L2 に対するフーリエ変換とフーリエ逆変換は以下のL2 における極限

lim
R→∞

∥∥∥∥f̂ − (2π)−1/2

∫ R

−R

e−iξxf(x)dx

∥∥∥∥
L2

= 0,

lim
R→∞

∥∥∥∥f∨ − (2π)−1/2

∫ R

−R

eiξxf(ξ)dξ

∥∥∥∥
L2

= 0

によって表すことができる.� �
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証明. まず定理を証明するために準備をする. ψ ∈ L1 ∩L2 とするとL1 としてフーリエ
変換

ψ̂ = (2π)−1/2

∫
R
e−iξxψ(x)dx

を定義できる. ここでは L2 のフーリエ変換と同じ記号を使っているが ψ のフーリエ変
換は積分であることに注意.∫

R
e−tξ2

∣∣∣ψ̂(ξ)∣∣∣2 dξ = ∫
R
e−tξ2

(
(2π)−1/2

∫
R
e−iξxψ(x)dx

)(
(2π)−1/2

∫
R
e−iξyψ(y)dy

)
dξ

= (2π)−1/2

∫
R
ψ(x)

(∫
R

(
(2π)−1/2

∫
R
e−i(x−y)ξ−tξ2dξ

)
ψ(y)dy

)
dx

=

∫
R
ψ(x)ψt(x)dx.

ここで ψt = Ut ∗ ψ のことで∣∣∣∣∫
R
ψ(x)ψt(x)dx−

∫
R
|ψ(x)|2dx

∣∣∣∣ ≤ ‖ψ‖L2‖ψt − ψ‖L2 → 0 (t→ 0)

なので右辺は ‖ψ‖2L2 <∞ に収束する. また t = 1/k を代入して単調収束定理より

lim
k→∞

∫
R
e−(1/k)ξ2

∣∣∣ψ̂(ξ)∣∣∣2 dξ = ∫
R

∣∣∣ψ̂(ξ)∣∣∣2 dξ.
以上より ψ ∈ L1 ∩ L2 に対して ∫

R

∣∣∣ψ̂(ξ)∣∣∣2 dξ <∞

であり ∥∥∥ψ̂∥∥∥
L2

= ‖ψ‖L2

となることがいえた. この事実を用いて定理の証明をしていく. f ∈ L2 に対して

fn = χnf (n = 1, 2, 3, . . .)

とすると {fn} ⊂ L1 ∩ L2 であり L2ノルムで fn → f (n → ∞) である. したがって L1

の意味でのフーリエ変換について
{
f̂n

}
⊂ L2 はコーシー列なので

lim
n→∞

∥∥∥f̂n − g
∥∥∥
L2

= 0

なる g ∈ L2 が存在する. f ∈ L2 に収束する {φn} ⊂ S(R) とする.

lim
n→∞

‖v − φ̂n‖L2 = 0
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によって定義されるL2 の意味でのフーリエ変換 f̂ = v が g と等しいことを示せば良い.∥∥∥g − f̂
∥∥∥
L2

≤
∥∥∥g − f̂n

∥∥∥
L2

+
∥∥∥f̂n − φ̂n

∥∥∥
L2

+
∥∥∥φ̂n − f̂

∥∥∥
L2

=
∥∥∥g − f̂n

∥∥∥
L2

+ ‖fn − φn‖L2 +
∥∥∥φ̂n − f̂

∥∥∥
L2

→ 0 (n→ ∞).

したがって g = f̂ in L2 なので

lim
n→∞

∥∥∥f̂ − f̂n

∥∥∥
L2

= lim
n→∞

∥∥∥∥f̂ − (2π)−1/2

∫
|x|≤n

e−iξxf(x)dx

∥∥∥∥
L2

= 0

となる. したがって

lim
R→∞

∥∥∥∥f̂ − (2π)−1/2

∫
|x|≤R

e−iξxf(x)dx

∥∥∥∥
L2

= 0.

f ∈ L1 ∩ L2 であれば L1 の意味でのフーリエ変換と L2 の意味でのフーリエ変換は
a.e. Rで一致する. 実際, 上の証明の前半の結果を用いると∥∥∥∥(2π)−1/2

∫
R
e−iξxf(x)dx− (2π)−1/2

∫ R

−R

e−iξxf(x)dx

∥∥∥∥
L2

=

∥∥∥∥(2π)−1/2

∫
R
e−iξxf(x)dx− (2π)−1/2

∫
R
e−iξxχR(x)f(x)dx

∥∥∥∥
L2

=

∥∥∥∥(2π)−1/2

∫
R
e−iξx (f(x)− χR(x)f(x)) dx

∥∥∥∥
L2

= ‖f − χRf‖L2

→ 0 (R → ∞)

となるからである.
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第11章 緩増加超関数のフーリエ変換

この章では以下の定理を用いる.

変分法の基本補題� �
f ∈ L1

loc(R) とする. ∫
R
f(x)φ(x)dx = 0

が任意の φ ∈ C∞
0 (R) に対して成り立つとする. このとき f = 0 (a.e. R).� �

緩増加超関数
点列 {φn} ⊂ S(R) の φ ∈ S(R) への S(R) の意味における収束は

pN(φ) = sup
x∈R

(1 + |x|)N
N∑
k=0

∣∣φ(k)(x)
∣∣ (N ∈ N ∪ {0})

と定義したものに対して

lim
n→∞

(pN(φn − φ)) = 0

が任意のN ≥ 0 に対して成り立つものと定義する.

S(R) の上で定義された写像 T : S(R) 3 φ 7→ 〈T, φ〉 ∈ C が以下の条件をみたすとき
緩増加超関数であるといい, その集合を S ′(R) とかく.

(1) 任意の φ, ψ ∈ S(R) と α, β ∈ C に対して

〈T, αφ+ βψ〉 = α〈T, φ〉+ β〈T, ψ〉.

(2) {φn} ⊂ S(R) が φ ∈ S(R) に収束するとき

lim
n→∞

〈T, φn〉 = 〈T, φ〉.
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T ∈ S ′(R) が T = 0 であるとは, 任意の φ ∈ S(R) に対して

〈T, φ〉 = 0

をみたすことをいう.

T, S ∈ S ′(R), α ∈ C に対して

〈αT, φ〉 = 〈T, αφ〉,
〈T + S, φ〉 = 〈T, φ〉+ 〈S, φ〉

と定義する. これにより S ′(R) はベクトル空間となる.

今後, 緩増加超関数を単に超関数ということがある.� �
1 ≤ p ≤ ∞ に対して f ∈ Lp は

〈Tf , φ〉 =
∫
R
f(x)φ(x)dx, φ ∈ S(R)

によってひとつの超関数を定める. 実際, 線形性は明らかであろう. 次に

|〈Tf , φ〉| =
∣∣∣∣∫

R
f(x)φ(x)dx

∣∣∣∣
≤
∫
R
|f(x)|(1 + |x|)−2(1 + |x|)2

2∑
k=0

∣∣φ(k)(x)
∣∣ dx

≤ ‖f‖Lp‖(1 + |x|)−2‖Lp′p2(φ)

= Cp2(φ)

となるので連続であることも確かめられた.� �
以上により f ∈ Lp は超関数を定めることが確かめられたが以下の定理によって Tf と f

を同一視することが可能である.� �
定理 24. 1 ≤ p ≤ ∞ とする. f, g ∈ Lp であるとする. このとき

Tf = Tg

ならば
f = g (a.e. R)

が成り立つ. この逆も成り立つ.� �
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証明. Tf = Tg を仮定すると∫
R
f(x)φ(x)dx =

∫
R
g(x)φ(x)dx

が任意の φ ∈ S(R) に対して成り立つ. C∞
0 (R) ⊂ S(R) なのでとくに∫

R
f(x)ψ(x)dx =

∫
R
g(x)ψ(x)dx

が任意の ψ ∈ C∞
0 (R) に対して成り立つ. 変分法の基本補題より主張を得る. 逆は定義

より直ちに得られる.

以上の命題により今後 f ∈ Lp の定める超関数 Tf を単に f と書くことがある.

緩増加超関数のフーリエ変換

T ∈ S ′(R) のフーリエ変換F : T 7→ T̂ を〈
T̂ , φ

〉
= 〈T, φ̂〉 (φ ∈ S(R))

によって定義する. フーリエ逆変換F−1 : T 7→ T∨ も同様に定義される.

T ∈ S ′(R) に対して上の様に定義した T̂ は T̂ ∈ S ′(R) であることは簡単に確かめら
れる.� �
注意 7. f ∈ Lp で L1 や L2 に属さない関数が存在する. f ∈ S ′(R) なので超関数と
してフーリエ変換を定義することができる. これが超関数を導入した動機のひとつ
である.� �� �
定理 25. T, S ∈ S ′(R), α, β ∈ C とする. このとき

F [αT + βS] = αF [T ] + βF [S]

が成り立つ.� �
証明. 計算練習も兼ねて自分で証明してみよう.

次のふたつの事実は重要である.� �
定理 26. f ∈ L1 の緩増加超関数としてのフーリエ変換とL1 における意味でのフー
リエ変換は一致する.� �
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証明. f ∈ L1 とすれば 〈
T̂f , φ

〉
= 〈Tf , φ̂〉

=

∫
R
f(x)φ̂(x)dx

=

∫
R
f̂(ξ)φ(ξ)dξ

=
〈
Tf̂ , φ

〉
.

ここで f̂ は L1 の意味でのフーリエ変換である.� �
定理 27. f ∈ L2 の緩増加超関数としてのフーリエ変換とL2 における意味でのフー
リエ変換は一致する.� �
証明. f ∈ L2 とする. f に L2ノルムで収束する点列 {ψn} ⊂ S(R) とする. このとき f̂

は
{
ψ̂n

}
⊂ S(R) の極限点として定義される.〈

T̂f , φ
〉
= 〈Tf , φ̂〉

=

∫
R
f(x)φ̂(x)dx

= lim
n→∞

∫
R
ψn(x)φ̂(x)dx

= lim
n→∞

∫
R
ψ̂n(ξ)φ(ξ)dξ

=

∫
R
f̂(ξ)φ(ξ)dξ

=
〈
Tf̂ , φ

〉
.

ここで f̂ は L2 の意味でのフーリエ変換である.� �
定理 28. 以下のことが成り立つ.

(1) 反転公式F−1F [T ] = FF−1[T ] = T が任意の T ∈ S ′(R) に対して成り立つ.

(2) F : S ′(R) → S ′(R) は全単射である. フーリエ逆変換に関しても同様である.� �
証明. 計算練習も兼ねて自分で証明してみよう.
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超関数の収束

点列 {Tn} ⊂ S ′(R) が T ∈ S ′(R) に収束するとは

lim
n→∞

〈Tn, φ〉 = 〈T, φ〉 (φ ∈ S(R))

を満たすものと定義する.

� �
定理 29. 点列 {Tn} ⊂ S ′(R) が S ′(R) の意味で Tn → T (n → ∞) ならば T̂n →
T̂ (n→ ∞) が成り立つ.� �
証明. 計算練習も兼ねて自分で証明してみよう.

導超関数

T ∈ S ′(R) の導超関数 T ′ ∈ S ′(R) を

〈T ′, φ〉 = −〈T, φ′〉 (φ ∈ S(R))

によって定義する. 高階導超関数はこの定義を繰り返し適用したものとして定義する.

� �
注意 8. 任意の超関数に対して導超関数を定義できる.� �
T ∈ S ′(R) に対して x · T = T · x ∈ S ′(R) は

〈x · T, φ〉 = 〈T, x · φ〉 (φ ∈ S(R))

によって定義される.

� �
定理 30. 任意の T ∈ S ′(R) に対して以下の式が成り立つ.

(1) T̂ ′ = iξ · T̂ .

(2)
(
T̂
)′

= −̂ix · T .� �
証明. 計算練習も兼ねて自分で証明してみよう.
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積と合成積

T ∈ S ′(R) と φ ∈ S(R) に対して積 T · φ と合成積 T ∗ φ を

〈T · φ, ψ〉 = 〈T, φ · ψ〉 (ψ ∈ S(R)),

〈T ∗ φ, ψ〉 =
〈
T,

∫
R
φ(y − ·)ψ(y)dy

〉
(ψ ∈ S(R))

によって定義する.

上の定義において φ(y − x) = φ(−(x − y)) であるが φ ∈ S(R) ならば φ(−·) ∈ S(R)
であることに注意. φ ∈ S(R) を固定して ψ ∈ S(R) に対して

ψ̃(x) =

∫
R
φ(x− y)ψ(y)dy (x ∈ R)

とおいたときに ψ̃ ∈ S(R) であること及び点列 {ψn} ⊂ S(R) について

lim
n→∞

pN(ψn − ψ) = 0 (∀N ∈ N ∪ {0})

ならば

lim
n→∞

pM

(
ψ̃n − ψ̃

)
= 0 (∀M ∈ N ∪ {0})

が成り立つことが確かめられる*1.� �
定理 31. T ∈ S ′(R), φ ∈ S(R) ならば

T̂ ∗ φ = (2π)1/2T̂ · φ̂

が成り立つ.� �
証明. 〈

T̂ ∗ φ, ψ
〉
=
〈
T ∗ φ, ψ̂

〉
=

〈
T,

∫
R
φ(y − ·)ψ̂(y)dy

〉
=

〈(
T̂
)∨

,

∫
R
φ(y − ·)ψ̂(y)dy

〉
=

〈
T̂ ,F−1

∫
R
φ(y − ·)ψ̂(y)dy

〉
.

*1この説明は煩雑なので補遺で行う.
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ここで φ(−·)∨ = φ̂ であることを用いて

F−1

[∫
R
φ(y − ·)ψ̂(y)dy

]
= F−1

[
φ(−·) ∗ ψ̂

]
= (2π)1/2φ(−·)∨ · ψ
= (2π)1/2φ̂ · ψ.

以上より 〈
T̂ ∗ φ, ψ

〉
=

〈
T̂ ,F−1

∫
R
φ(y − ·)ψ̂(y)dy

〉
=
〈
T̂ , (2π)1/2φ̂ · ψ

〉
=
〈
(2π)1/2T̂ · φ̂, ψ

〉
.

デルタ関数
デルタ関数� �
a ∈ R を定数とする. デルタ関数と呼ばれる超関数 δa : S(R) → C を

〈δa, φ〉 = φ(a) (φ ∈ S(R))

と定義する.� �� �
定理 32. デルタ関数に関して以下が成り立つ.

(1) δ̂a = (2π)−1/2e−iaξ.

(2) êiax = (2π)1/2δa.� �
証明. 計算練習も兼ねて自分で証明してみよう.� �
定理 33. ヘヴィサイドの階段関数を

H(x) =

{
0 (x < 0)

1 (x ≥ 0)

と定義する. このときH ′ = δ0 である.� �
証明. 計算練習も兼ねて自分で証明してみよう.
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第12章 自由シュレディンガー方程式

この章では以下の事実を用いる.� �
t ∈ R とする. ϵ > 0 に対し fϵ(ξ) = e−i(t/2−iϵ)|ξ|2 , ξ ∈ R とする. このとき次を得る.(

e−i(t/2−iϵ)|ξ|2
)∨

(x) = (it+ 2ϵ)−1/2e−|x|2/(2it+4ϵ) (x ∈ R).� �
fϵ ∈ L1 である. 本来の目的から逸脱してしまうので補遺で説明をする.

自由シュレディンガー方程式

自由シュレディンガー方程式の初期値問題i∂tu+
1

2
∂2xu = 0 (in R× R),

u(0, x) = ϕ(x) (x ∈ R)

について考える. t = 0 において初期条件として与えられた関数 ϕ を初期値といい, 与え
られた初期値に対して微分方程式を解く問題を初期値問題という.

ここでは初期値に対して ϕ ∈ L2 と仮定して解 u = u(t, x) を構成する方法を説明する.

解の構成
次の補題を紹介する.� �
補題 7. t 6= 0 とする. 関数 f(ξ) = e−i(t/2)|ξ|2 (ξ ∈ R) とする. このとき緩増加超関
数の意味でのフーリエ逆変換について

(Tf )
∨ = T(it)−1/2ei|x|2/2t .� �

証明. f ∈ L∞(R)なので緩増加超関数Tf が定まる. ϵ > 0に対しfϵ(ξ) = e−i(t/2−iϵ)|ξ|2 , ξ ∈
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R を考える. fϵ ∈ L1 なので緩増加超関数 Tfϵ が定まるのでフーリエ変換の定義より

〈(Tfϵ)
∨ , φ〉 = 〈Tfϵ , φ∨〉

=

∫
R
fϵ(x)φ

∨(x)dx

−→
∫
R
f(x)φ∨(x)dx (ϵ→ 0)

= 〈Tf , φ∨〉
= 〈(Tf )∨ , φ〉.

一方で

〈(Tfϵ)
∨ , φ〉 = 〈Tf∨

ϵ
, φ〉

=

∫
R
(it+ 2ϵ)−1/2e−|x|2/(2it+4ϵ)φ(x)dx

−→
∫
R
(it)−1/2ei|x|

2/2tφ(x)dx (ϵ→ 0)

=
〈
T(it)−1/2ei|x|2/2t , φ

〉
.

これより求める式を得る.

シュレディンガー方程式の両辺に対して超関数の意味におけるフーリエ変換を施すと〈
i∂tû(t)−

1

2
|ξ|2û(t), φ

〉
= 0 (t ∈ R)

を任意の φ ∈ S(R) に対して得る. このとき φ の任意性より〈
i∂t

(
ei

t
2
|ξ|2û

)
(t), φ

〉
= 0

となるので

i
d

dt

〈
ei

t
2
|ξ|2û(t), φ

〉
= 0.

これを解くと 〈
ei

t
2
|ξ|2û(t), φ

〉
=
〈
ϕ̂, φ

〉
を得る. これより

〈û(t), φ〉 =
〈
e−i t

2
|ξ|2ϕ̂, φ

〉
.

したがって超関数のフーリエ変換の反転公式より

u(t, x) = F−1
[
e−i(t/2)|ξ|2ϕ̂

]
(x) ((t, x) ∈ R× R).
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以上より u ∈ C (R;S ′(R)) なる解を得ることができた. ここで超関数値関数

T (t, ·) : t ∈ R 7→ T (t, ·) ∈ S ′(R)

の微分
v(t, ·) = ∂tT (t, ·) (t ∈ R)

は

lim
h→0

〈
T (t+ h, ·)− T (t, ·)

h
− v(t, ·), φ

〉
= 0 (φ ∈ S(R))

なる極限として定義されている. また a ∈ R, T ∈ S ′(R) に対して eia|x|
2 · T は〈

eia|x|
2 · T, φ

〉
=
〈
T, eia|x|

2 · φ
〉

(φ ∈ S(R))

と定義される.

次に解の表示の公式を求めよう. そのために積のフーリエ逆変換に対して合成積の公
式を適用したいので以下の議論では滑らかな関数で初期値を近似する. すなわち {ϕn} ⊂
S(R) を L2ノルムで ϕ ∈ L2 に収束する点列とする. このとき

un(t, x) = F−1
[
e−i(t/2)|ξ|2ϕ̂n

]
(x) ((t, x) ∈ R× R)

は

lim
n→∞

‖u(t)− un(t)‖L2 = 0

を満たす. 超関数と急減少関数の合成積に対するフーリエ変換の公式

T̂ ∗ φ = (2π)1/2T̂ · φ̂

より

(v · ŵ)∨ = (2π)−1/2v∨ ∗ w

となるので

un = (2π)−1/2
(
e−i(t/2)|ξ|2

)∨
∗ ϕn

を得る. 上の補題より

un(t, x) = (2πit)−1/2

∫
R
ei|x−y|2/2tϕn(y)dy (t 6= 0, x ∈ R)

となる. t 6= 0 に対してM(t), D(t) をそれぞれ

M(t)f(x) = ei|x|
2/2tf(x) (x ∈ R),

D(t)f(x) = (it)−1/2f
(x
t

)
(x ∈ R)
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と定義する. これらは

‖M(t)f‖L2 = ‖f‖L2 , ‖D(t)f‖L2 = ‖f‖L2

を任意の f ∈ L2 に対して満たすことがわかる. これを用いて

un(t, x) = (2πit)−1/2

∫
R
ei|x−y|2/2tϕn(y)dy

= (2πit)−1/2ei|x|
2/2t

∫
R
e−ixy/tei|y|

2/2tϕn(y)dy

=M(t)D(t)F [M(t)ϕn] (x)

と書ける. またD(t) の逆作用素はD−1(t) = iD (t−1) である. したがって

lim
n→∞

‖u(t)− un(t)‖L2

= lim
n→∞

‖u(t)−M(t)D(t)F [M(t)ϕn]‖L2

= lim
n→∞

∥∥iD (t−1
)
M(−t)u(t)−F [M(t)ϕn]

∥∥
L2

= 0

を得る. {M(t)ϕn} ⊂ S(R) はM(t)ϕ に L2ノルムで収束するので L2 におけるフーリエ
変換の意味で

iD(t−1)M(−t)u(t) = F [M(t)ϕ]

である. したがって

lim
R→∞

∥∥∥∥u(t)− (2πit)−1/2

∫ R

−R

ei|x−y|2/2tϕ(y)dy

∥∥∥∥
L2

= 0,

u(t) =M(t)D(t)F [M(t)ϕ]

ここで t 6= 0. また初期値が L1 ∩ L2 に属す場合は

u(t) = (2πit)−1/2

∫
R
ei|x−y|2/2tϕ(y)dy, ϕ ∈ L1 ∩ L2 (t 6= 0).

自由シュレディンガー方程式の解を与える作用素 U = U(t) を

U(t)f = F−1
[
e−i(t/2)|ξ|2 f̂

]
(t ∈ R)

によって定義する. U(t), t ∈ R はシュレディンガー発展作用素と呼ばれるものである.
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解の基本的な性質� �
定理 34. ϕ ∈ L2 とする. 以下が成り立つ.

(1) U(t+ s)ϕ = U(t) (U(s)ϕ) (t, s ∈ R).

(2) U(0)ϕ = ϕ.

(3) lim
t→0

‖U(t)ϕ− ϕ‖L2 = 0.� �
証明. (1) F−1F = FF−1 = I なので

U(t+ s)ϕ = F−1
[
e−i((t+s)/2)|ξ|2F [ϕ]

]
= F−1

[
e−i(t/2)|ξ|2e−i(s/2)|ξ|2F [ϕ]

]
= F−1

[
e−i(t/2)|ξ|2F

[
F−1e−i(s/2)|ξ|2F [ϕ]

]]
= U(t) (U(s)ϕ) .

(2)

U(0)ϕ = F−1
[
e−i(0/2)|ξ|2F [ϕ]

]
= F−1F [ϕ]

= ϕ.

(3) ∫
R
| (U(t)ϕ) (x)− ϕ(x)|2dx =

∫
R

∣∣∣F−1
[(
e−i(t/2)|ξ|2 − 1

)
ϕ̂
]
(x)
∣∣∣2 dx

=

∫
R

∣∣∣(e−i(t/2)|ξ|2 − 1
)
ϕ̂(ξ)

∣∣∣2 dξ
→ 0 (t→ 0).

ここでフーリエ変換のL2 におけるユニタリ性を用いた. また最後の極限操作では
ルベーグ収束定理を用いた.

� �
定理 35. ϕ ∈ L2 に対して

lim
t→±∞

∥∥∥U(t)ϕ− (it)−1/2ei|x|
2/2tϕ̂

( ·
t

)∥∥∥
L2

= 0

が成り立つ.� �
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証明. 任意の ε > 0 とする. N = N(ε) ≥ 1 が存在し n ≥ N ならば

‖ϕ− ϕn‖L2 <
ε

3

が成り立つ. とくに n = N に対して成り立つ. ϕ ∈ L2 に L2ノルムで収束する点列を
{ϕn} ⊂ S(R) とする. これに対して

U(t)ϕn − (it)−1/2ei|x|
2/2tϕ̂n

( ·
t

)
=M(t)D(t)FM(t)ϕn −M(t)D(t)Fϕn

=M(t)D(t)F(M(t)− 1)ϕn

となる. また

|M(t)− 1| =
∣∣∣ei|x|2/2t − 1

∣∣∣
=
∣∣∣ei|x|2/4t(ei|x|2/4t − e−i|x|2/4t)

∣∣∣
= 2

∣∣sin(|x|2/4t)∣∣
≤ |x|2

2|t|
(t 6= 0)

と評価できる. これより L = L(ε,N) > 0 が存在し |t| ≥ L ならば∥∥∥U(t)ϕN − (it)−1/2ei|x|
2/2tϕ̂N

( ·
t

)∥∥∥
L2

≤ C|t|−1‖|x|2ϕN‖L2

<
ε

3
.

したがって |t| ≥ L ならば∥∥∥U(t)ϕ− (it)−1/2ei|x|
2/2tϕ̂

( ·
t

)∥∥∥
L2

=

∥∥∥∥∥U(t)ϕ− (it)−1/2ei|x|
2/2tϕ̂

( ·
t

)
−
(
U(t)ϕN − (it)−1/2ei|x|

2/2tϕ̂N

( ·
t

))
+
(
U(t)ϕN − (it)−1/2ei|x|

2/2tϕ̂N

( ·
t

))∥∥∥∥∥
L2

≤ ‖U(t)ϕ− U(t)ϕN‖L2 +
∥∥∥(it)−1/2ei|x|

2/2tϕ̂
( ·
t

)
− (it)−1/2ei|x|

2/2tϕ̂N

( ·
t

)∥∥∥
L2

+
∥∥∥U(t)ϕN − (it)−1/2ei|x|

2/2tϕ̂N

( ·
t

)∥∥∥
L2

= 2 ‖ϕ− ϕN‖L2 +
∥∥∥U(t)ϕN − (it)−1/2ei|x|

2/2tϕ̂N

( ·
t

)∥∥∥
L2

< ε.
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ほとんどいたるところ
ほとんどいたるところ� �
部分集合A ⊂ R とする. 任意の ε > 0 に対して区間の列 {Ik} が存在し

A ⊂
∞⋃
k=1

Ik,

∞∑
k=1

|Ik| < ε

がなりたつときA を零集合という. ここで区間 I ⊂ R の長さを |I| とした. ある命
題P (x) が零集合に属する点を除いて成り立つとき, ほとんどいたるところ成り立つ
という. そのことを

P (x), (a.e.), P (x), a.a. x ∈ R

とかいたりする.� �� �
例 8. 可算部分集合A ⊂ R は零集合である. 実際に可算部分集合をA = {a1, a2, . . .}
とすると, 任意の ε > 0 に対して

Ik =
[
ak −

ε

2k+2
, ak +

ε

2k+2

)
, k ≥ 1

とすれば

A ⊂
∞⋃
k=1

Ik, 0 ≤
∞∑
k=1

|Ik| =
ε

2
< ε

となるからである.� �
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Lpの完備性
ノルム空間� �
K = R またはC上の線形空間X において次の条件をみたす ‖ · ‖X をノルムという.

(i) ‖f‖X ≥ 0, ‖f‖X = 0 ⇐⇒ f = 0

(ii) ‖αf‖X = |α| ‖f‖X , α ∈ K, f ∈ X

(iii) ‖f + g‖X ≤ ‖f‖X + ‖g‖X , f, g ∈ X

ノルムの定義された線形空間をノルム空間という.� �
バナッハ空間� �
K = R または C上のノルム空間X が完備であるとは任意のコーシー列がX に極
限点 f ∈ X をもつことである. すなわち {fn} ⊂ X が

lim
n,m→∞

‖fn − fm‖X = 0

を満たすならば f ∈ X が存在し

lim
n→∞

‖f − fn‖X = 0

が成り立つことをいう. 完備なノルム空間をバナッハ空間という.� �
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� �
注意 9. X = C([0, 1]) においてノルムを積分

‖f‖X,1 =

∫ 1

0

|f(x)|dx

として定めるとX は完備にならないことが知られている. すなわちあるコーシー列
に対して極限点がX に属さないことが示されるのであるa. しかしノルムを最大値
ノルム

‖f‖X,0 = max
x∈[0,1]

|f(x)|

として定めると完備となることが知られている.

a実際に

fn(x) =


1 (0 ≤ x ≤ 1/2)

1− 2n(x− 1/2) (1/2 ≤ x ≤ 1/2 + 1/2n)

0 (1/2 + 1/2n ≤ x ≤ 1)

と定義すると n > m として, 積分が図形の面積であることに注意すると

‖fn − fm‖X,1 =
1

2m
− 1

2n
→ 0 (n,m → ∞)

を得る. したがってコーシー列である. ところが fn の極限点は

f(x) =

{
1 (0 ≤ x ≤ 1/2)

0 (1/2 < x ≤ 1)

という不連続関数である.� �
Lp の完備性を証明しよう. その前に補題を紹介する.� �
補題 8. 1 ≤ p ≤ ∞ とする. fi ∈ Lp かつ∑∞

i=1 ‖fi‖Lp < ∞ ならば∑∞
i=1 fi(x),

x ∈ R (a.e.) は収束し∑∞
i=1 fi ∈ Lp で∥∥∥∥∥

∞∑
i=1

fi

∥∥∥∥∥
Lp

≤
∞∑
i=1

‖fi‖Lp

が成り立つ.� �
証明. 1 ≤ p <∞ とする. (

n∑
i=1

|fi|

)p

↗

(
∞∑
i=1

|fi|

)p
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なので (∫
R

(
∞∑
i=1

|fi(x)|

)p

dx

)1/p

=

(
lim
n→∞

∫
R

(
n∑

i=1

|fi(x)|

)p

dx

)1/p

= lim
n→∞

∥∥∥∥∥
n∑

i=1

|fi|

∥∥∥∥∥
Lp

≤ lim
n→∞

n∑
i=1

‖fi‖Lp

=
∞∑
i=1

‖fi‖Lp <∞.

したがって∑∞
i=1 fi は収束し主張が示せた. p = ∞ の場合はほとんど明らかである.� �

定理 36. 1 ≤ p ≤ ∞ に対して Lp は完備である.� �
{fn} ⊂ Lp をコーシー列とする. すなわち

lim
n,m→∞

‖fn − fm‖Lp = 0.

このとき n1, n2, · · · が存在し次が成り立つ

ni < ni+1,
∥∥fni+1

− fni

∥∥
Lp <

1

2i
.

∞∑
i=1

∥∥fni+1
− fni

∥∥
Lp <∞

なので上の補題より
∞∑
i=1

(
fni+1

− fni

)
∈ Lp <∞.

したがって

f = fn1 +
∞∑
i=1

(
fni+1

− fni

)
とおけば f ∈ Lp. さらに

f − fnk
=

∞∑
i=k

(fni+1
− fni

)
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なので

lim
k→∞

‖fnk
− f‖Lp ≤ lim

k→∞

∞∑
i=k

∥∥fni+1
− fni

∥∥
Lp ≤ lim

k→∞

1

2k−1
= 0.

{fn} がコーシー列なので

lim
n→∞

‖fn − f‖Lp ≤ lim
n,k→∞

(
‖fn − fnk

‖Lp + ‖fnk
− f‖Lp

)
= 0.

これでコーシー列が収束することがいえた.

急減少関数の合成積の性質
φ ∈ S(R) を固定して ψ ∈ S(R) に対して

ψ̃(x) =

∫
R
φ(x− y)ψ(y)dy, x ∈ R

と定める. まず

ψ̃(k)(x) =

∫
R
φ(k)(x− y)ψ(y)dy =

∫
R
φ(x− y)ψ(k)(y)dy, x ∈ R

を示そう. k = 1 の場合について∣∣∣∣ ∂∂x (φ(x− y)ψ(y))

∣∣∣∣ ≤ C · p1(φ)|ψ(y)| ∈ L1
y

なので積分記号下で微分をすることが正当化され目的の式が示される. k ≥ 1 に対する
高階微分に関しても同様である. また合成積の交換法則 φ ∗ ψ = ψ ∗ φ によりもう一方
の式も得られる. ϕ ∈ S(R) とすると, 任意の k,m,N ≥ 0 に対して

(1 + |x|)m
∣∣ϕ(k)(x)

∣∣ ≤ (1 + |x|)m+k

m+k∑
l=0

∣∣ϕ(l)(x)
∣∣

≤ pm+k(ϕ), x ∈ R

と

pN(ϕ) = sup
x∈R

(1 + |x|)N
N∑
k=0

∣∣ϕ(k)(x)
∣∣

≤
N∑
k=0

sup
x∈R

(1 + |x|)N
∣∣ϕ(k)(x)

∣∣
≤ CN
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が成り立つ. 以下の評価を得る.

(1 + |x|)N ≤ (1 + |x− y|+ |y|)N

≤ (1 + |x− y|)N(1 + |y|)N .

これより

(1 + |x|)N
N∑
k=0

∣∣∣ψ̃(k)(x)
∣∣∣

≤
∫
R
(1 + |x|)N

N∑
k=0

∣∣φ(k)(x− y)
∣∣ · |ψ(y)| dy

≤
∫
R
(1 + |x− y|)N

N∑
k=0

∣∣φ(k)(x− y)
∣∣ · (1 + |y|)N |ψ(y)| dy

=

∫
R
(1 + |x− y|)N

N∑
k=0

∣∣φ(k)(x− y)
∣∣ · (1 + |y|)−2 · (1 + |y|)N+2 |ψ(y)| dy

≤ pN(φ) · pN+2(ψ), x ∈ R.

したがって ψ̃ ∈ S(R). 同様にして

lim
n→∞

pN(ψn − ψ) = 0, ∀N ≥ 0

ならば

lim
n→∞

pM

(
ψ̃n − ψ̃

)
= 0, ∀M ≥ 0

であることが示される.

複素係数をもつガウス関数のフーリエ変換
t ∈ R とする. 以下の式(

e−i(t/2−iϵ)|ξ|2
)∨

(x) = (it+ 2ϵ)−1/2e−|x|2/(2it+4ϵ), x ∈ R.

が成り立つことを示そう. それには α = a+ ib ∈ (0,∞) + iR に対して

(2π)−1/2

∫
R
e−iξxe−α|x|2dx = (2α)−1/2e−|ξ|2/4α, ξ ∈ R

を示せば十分である. 実係数をもつガウス関数については

(2π)−1/2

∫
R
e−iξxe−a|x|2dx = (2a)−1/2e−|ξ|2/4a
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である. ξ ∈ R を固定して関数 g, h を

g(a) = (2π)−1/2

∫
R
e−iξxe−a|x|2dx, a > 0,

h(a) = (2a)−1/2e−|ξ|2/4a, a > 0

と定義する. g(a) = h(a), a > 0 が成り立っており両者ともに解析接続

g(a+ ib) = (2π)−1/2

∫
R
e−iξxe−(a+ib)|x|2dx, a > 0, b ∈ R,

h(a+ ib) = (2(a+ ib))−1/2e−|ξ|2/4(a+ib), a > 0, b ∈ R

をもつ. したがって一致の定理より g(a+ ib) = h(a+ ib), a > 0, b ∈ R. すなわち

(2π)−1/2

∫
R
e−iξxe−α|x|2dx = (2α)−1/2e−|ξ|2/4α, α ∈ (0,∞) + iR.
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