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はじめに
この資料は解析学 IIの講義資料です. 授業はこの資料に沿って進めます. 章の番号と
授業の回が対応しています. 便宜上, 中間試験と期末試験の章を配置しています.
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第1章 級数

極限の復習
はじめに数列の極限の定義をおさらいする.

ε-δ論法とは� �
高校では数列 {an} = {an}∞n=1 が n → ∞ の極限で a に収束することを “ n が限りな
く大きく” なるとき “ an は a に限りなく近づく” a と習った. またこの場合の極限
のことを

lim
n→∞

an = a

とかくのである. では限りなくとは一体どのくらいなのか. この点が曖昧なままでは
極限が関わる議論で都合の悪いことがある. そこでこれらの曖昧さを回避して共通
の認識を持ち得る形で極限の定義を述べる論法が ε-δ 論法である. これは数列の場
合には記号に合わせて ε-N 論法と呼ぶこともあるが基本的な考え方は同じである.

aつまり |an − a|が限りなく小さくなるといっても同じ.� �
ε-N 方式による数列の極限の定義は以下のものである.

数列の極限の定義（復習）� �
数列 {an} が極限値 a ∈ R に収束するとは, 任意の ε > 0 に対してN = N(ε) ≥ 1 が
存在しa n ≥ N ならば

|an − a| < ε

が成り立つことをいう. このことを次の様にかく

lim
n→∞

an = a.

これを an −−−→
n→∞

a とか an → a (n → ∞) などとかくこともある.

aN は一般に εに依存するのでそのことを表明するためにN = N(ε)とかいた.� �
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� �
例 1. 数列 {an} は収束するとする. すなわち

lim
n→∞

an = a

であるとする. このとき, 総和平均の極限について

lim
n→∞

a1 + a2 + · · ·+ an
n

= a

が成り立つ. このことを示そう. 任意の ε > 0 に対してN1 = N1(ε) ≥ 1 が存在し
n ≥ N1 ならば

|an − a| < ε

2

が成り立つ.

m = max (|a1 − a|, |a2 − a|, . . . , |aN1−1 − a|)

とおく. このときN2 = N2(ε) ≥ 1 が存在し n ≥ N2 ならば
(N1 − 1)m

n
<

ε

2

が成り立つ. N = max(N1, N2) とすると n ≥ N ならば∣∣∣∣a1 + a2 + · · ·+ an
n

− a

∣∣∣∣
≤ |a1 − a|+ |a2 − a|+ · · ·+ |aN1−1 − a|

n
+

|aN1 − a|+ · · ·+ |an − a|
n

≤ (N1 − 1)m

n
+

|aN1 − a|+ · · ·+ |an − a|
n

<
ε

2
+

(n− (N1 − 1))

n

ε

2

=
ε

2
+

(
1− N1 − 1

n

)
ε

2

≤ ε.� �
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級数
級数� �
数列 {an} = {an}∞n=1 の無限個の和（無限和）

∞∑
n=1

an = a1 + a2 + · · ·+ ak + · · ·

を級数という. 無限級数といっても同じ意味である.� �
これはあくまで形式的に無限和を書き下しただけである. 無限和は有限の値に収束する
こともあれば無限大に発散することもある. 発散していることがわかればそれ以上は考
察の対象としてほとんど意味をもたない. 無限和の収束・発散の意味は次の様に部分和
の極限に対するものとして定義する.

級数の収束� �
{an} の k 項部分和

Sk =
k∑

n=1

an = a1 + a2 + · · ·+ ak

からなる数列 {Sk}∞k=1 が k → ∞ の極限で極限値 S ∈ R に収束するとき, すなわち
任意の ε > 0 に対してN = N(ε) ≥ 1 が存在し k ≥ N ならば

|Sk − S| < ε

が成り立つとき, 級数
∞∑
n=1

an は収束するといい

S = lim
k→∞

Sk =
∞∑
n=1

an

と表す.� �
発散も上と同様に ε-N 方式で定義される.

級数の発散� �
lim
k→∞

Sk = ±∞ のとき
∞∑
n=1

an = ±∞ とかく. この場合, 級数は発散するという.

� �
議論の文脈から無限和であることが明らかな場合は和の添え字を省略して

∑
an =

∞∑
n=1

an
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とかくことがある.� �
例 2. 級数の例として以下が挙げられる.

•
∞∑
n=1

1

2n
=

1

2
+

1

4
+

1

8
+ · · ·+ 1

2k
+ · · ·

•
∞∑
n=1

1

n2
= 1 +

1

4
+

1

9
+ · · ·+ 1

k2
+ · · ·

� �� �
例 3 (発散する級数). an = n で定まる数列 {an} の級数は発散する. 実際に部分和は

Sk =
1

2
k(k + 1)

である.

lim
k→∞

Sk = lim
k→∞

1

2
k(k + 1) = ∞

なので

S = lim
k→∞

Sk = ∞.� �� �
定理 1. {an} の級数

∑
an が収束するとき lim

n→∞
an = 0 が成り立つ.� �

証明. 部分和

Sk =
k∑

n=1

an

とおく. 収束するので
S = lim

k→∞
Sk

が成り立つ. このとき
Sk = a1 + a2 + · · ·+ ak−1 + ak,

Sk−1 = a1 + a2 + · · ·+ ak−1

なので
ak = Sk − Sk−1.

両辺, 極限操作をして
lim
k→∞

ak = lim
k→∞

(Sk − Sk−1) = S − S = 0.
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� �
注意 1. この定理は級数∑ anが収束するとき |an|は無限遠方で減衰しているという
ことをいっている.� �� �
注意 2. この定理の対偶をとって用いることもある. すなわち lim

n→∞
an 6= 0 ならば∑

an は収束しないという形で用いることもある.� �
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� �
例 4 (等比級数). r ∈ R とする. an = rn−1 で定まる数列 {an} からなる級数

∞∑
n=1

rn−1 = 1 + r + r2 + · · ·+ rk + · · ·

を等比級数という. 部分和 Skを求めてみよう. ふたつの式

Sk = 1 + r + r2 + · · ·+ rk−1,

rSk = r + r2 + · · ·+ rk−1 + rk

の両辺を引き算して 1− r で割ると部分和は

Sk =
1− rk

1− r
.

0 ≤ |r| < 1の場合
−1 < r < 1 に対しては lim

k→∞
rk = 0 なので

lim
k→∞

Sk = lim
k→∞

1− rk

1− r
=

1

1− r

を得る. したがって等比級数の公式

S = lim
k→∞

Sk =
1

1− r

を得る.

r = 1の場合
部分和が

Sk =
k∑

n=1

rn−1 = 1 + 1 + · · ·+ 1 = k

なので lim
k→∞

Sk = ∞.

r = −1の場合
部分和が

Sk =
1− (−1)k

2

なので lim
k→∞

Sk は振動しており発散である.

|r| > 1の場合
lim
n→∞

rn 6= 0 なので級数は発散する.

まとめると
∞∑
n=1

rn−1 =


1

1− r
(0 ≤ |r| < 1)

発散 (|r| ≥ 1)� �
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� �
注意 3. 上の例では無限個の正の数を加えても有限の値になる場合があることをいっ
ている.� �� �
定理 2 (線形性). 級数∑ an,

∑
bn は収束するとする. このとき以下の線形性が成り

立つ.

∞∑
n=1

(αan + βbn) = α
∞∑
n=1

an + β
∞∑
n=1

bn.

ここで定数 α, β ∈ R.� �
証明. 部分和が数列であることに注意する. 有限和に対しての線形性は明らかなので 数
列に対する和と極限操作の関係により

k∑
n=1

(αan + βbn) = α
k∑

n=1

an + β
k∑

n=1

bn

−−−→
k→∞

α
∞∑
n=1

an + β
∞∑
n=1

bn.

したがって左辺も極限値が存在し
∞∑
n=1

(αan + βbn) = lim
k→∞

k∑
n=1

(αan + βbn)

となる. 以上により
∞∑
n=1

(αan + βbn) = α
∞∑
n=1

an + β
∞∑
n=1

bn.



14 第 1章 級数

例題� �
例題 1. 次の等比級数の和を求めよ.

1 +
1

2
+

1

4
+

1

8
+ · · · .

解答.

1 +
1

2
+

1

4
+

1

8
+ · · · =

∞∑
n=1

(
1

2

)n−1

なので

r =
1

2

として等比級数の和の公式に当てはめると

1 +
1

2
+

1

4
+

1

8
+ · · · =

∞∑
n=1

(
1

2

)n−1

= 2.

� �� �
例題 2. 次の等比級数の和を求めよ.

1− 1

2
+

1

4
− 1

8
+ · · · .

解答.

1− 1

2
+

1

4
− 1

8
+ · · · =

∞∑
n=1

(
−1

2

)n−1

なので

r = −1

2

として等比級数の和の公式に当てはめると

1− 1

2
+

1

4
− 1

8
+ · · · =

∞∑
n=1

(
−1

2

)n−1

=
2

3
.

� �
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� �
例題 3. 級数

∞∑
n=1

1

n(n+ 2)
の値を求めよ.

解答. 部分分数分解により
1

n(n+ 2)
=

1

2

(
1

n
− 1

n+ 2

)
となるので部分和は

Sk =
1

2

k∑
n=1

(
1

n
− 1

n+ 2

)
=

1

2

[(
1

1
− 1

3

)
+

(
1

2
− 1

4

)
+

(
1

3
− 1

5

)
+ · · ·+

(
1

k
− 1

k + 2

)]
=

1

2

[(
1

1
−

�
�
�1

3

)
+

(
1

2
−

�
�
�1

4

)
+

(
�
�
�1

3
−

�
�
�1

5

)
+ · · ·+

(
�
�
�1

k
− 1

k + 2

)]
=

1

2

(
3

2
− 1

k + 1
− 1

k + 2

)
.

ここで最後から 2番目の項に−1/(k + 1) が残っていることに注意. 以上より
∞∑
n=1

1

n(n+ 2)
= lim

k→∞
Sk =

3

4
.

� �
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第2章 積分判定法

広義積分（復習）� �
s > 0 に対して関数 f : [1,∞) → R,

f(x) =
1

xs
(x ∈ [1,∞))

の [1,∞) における広義積分は
∫ ∞

1

1

xs
dx =


1

s− 1
(s > 1)

∞ (0 < s ≤ 1)

である. ここで重要なことは s > 1 のとき収束し 0 < s ≤ 1 のとき発散するという
ことである.� �
数列 {an} として

an =
1

ns

を考えると上の f に対して

an = f(n) (n ≥ 1)

と表される. この様に表されることから級数∑ an =
∑

f(n) の収束・発散を広義積分∫∞
1

f(x)dx の収束・発散と結びつけて考えようというのが積分判定法の考え方である.� �
定理 3 (積分判定法). s > 0 とする. このとき

∞∑
n=1

1

ns
=

{
収束 (s > 1)

発散 (0 < s ≤ 1)

が成り立つ.� �
証明. グラフを描いてみるとわかるように∫ k+1

1

1

xs
dx <

k∑
n=1

1

ns
< 1 +

∫ k

1

1

xs
dx
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が成り立つ. したがって級数∑(1/ns) の収束・発散は広義積分 ∫∞
1
(1/xs)dx の収束・発

散と一致する. すなわち s > 1 ならば収束し 0 < s ≤ 1 ならば発散する.� �
注意 4. 収束する場合でも具体的に級数の値がいくつかはここでは調べない. ここ
での興味は収束・発散である. 具体的な値はフーリエ級数などを用いて求められる
ことがある.� �
この定理の一般の場合が以下の定理である.� �
定理 4 (積分判定法（一般の場合)). 連続関数 f : [1,∞) → (0,∞) は単調減少関数a

であるとする. このとき an = f(n) からなる数列 {an} の級数
∞∑
n=1

an =
∞∑
n=1

f(n)

と広義積分 ∫ ∞

1

f(x)dx

の収束・発散は一致する.

ax1 > x2 ならば f(x1) ≤ f(x2)が成り立つ関数を単調減少関数であると言う.� �
証明. 単調減少性があるので定理 3 と同じ様に証明することができる. 詳しくいえば以
下の評価∫ k+1

1

f(x)dx =

∫ 2

1

f(x)dx+

∫ 3

2

f(x)dx+

∫ 4

3

f(x)dx+ · · ·+
∫ k+1

k

f(x)dx

≤
∫ 2

1

f(1)dx+

∫ 3

2

f(2)dx+

∫ 4

3

f(3)dx+ · · ·+
∫ k+1

k

f(k)dx

=
k∑

n=1

f(n) =
k∑

n=1

an
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と
k∑

n=1

an =
k∑

n=1

f(n)

= f(1) + f(2) + f(3) + · · ·+ f(k)

= f(1) +

∫ 2

1

f(2)dx+

∫ 3

2

f(3)dx+ · · ·+
∫ k

k−1

f(k)dx

≤ f(1) +

∫ 2

1

f(x)dx+

∫ 3

2

f(x)dx+ · · ·+
∫ k

k−1

f(x)dx

= f(1) +

∫ k

1

f(x)dx

を得る. まとめると ∫ k+1

1

f(x)dx ≤
k∑

n=1

an ≤ f(1) +

∫ k

1

f(x)dx

を得る. したがって求める結果を得る.

例題� �
例題 4. 級数

∞∑
n=1

1

n2
の収束・発散を判定せよ.

解答. 定理 3 に当てはめて考えると s = 2 なので s > 1 の場合だから収束する.� �
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� �
例題 5. 級数

∞∑
n=2

1

n log n
の収束・発散を判定せよ.

解答. 定理 4 に当てはめて考える. 関数

f(x) =
1

x log x
(x ≥ 2)

に対して
∞∑
n=2

1

n log n
=

∞∑
n=2

f(n)

となっている. ∫ ∞

2

1

x log x
dx = lim

R→∞

∫ R

2

1

x log x
dx

= lim
R→∞

[log(log x)]R2

= ∞.

すなわち級数に対応する広義積分は発散する. したがって級数
∞∑
n=2

1

n log n
は発散

する.� �
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第3章 比較判定法

正項級数� �
an ≥ 0 (n ≥ 1) なる項からなる級数∑ an を正項級数という.� �� �
定理 5 (比較判定法). ふたつの数列 {an}, {bn} とする. 定数C > 0 が存在し有限個
の項を除いて

0 ≤ an ≤ Cbn

が成り立つとする. このとき

(1)
∑

bn が収束するならば
∑

an は収束する.

(2)
∑

an が発散するならば
∑

bn は発散する.� �
証明. 仮定よりN ≥ 1 が存在し

k∑
n=N

an ≤ C
k∑

n=N

bn

が成り立つ.

(1) M =
∑

bn とおくと任意の k ≥ N + 1 に対して
k∑

n=N

an ≤ C
k∑

n=N

bn ≤ CM

である. したがって

Sk =
k∑

n=1

an ≤ a1 + a2 + · · ·+ aN−1 + CM

すなわち {Sk} は上に有界な単調増加列であるから収束する.

(2)
∑

an が発散するならば
k∑

n=N

an ≤ C
k∑

n=N

bn

の左辺は発散するから右辺もそうなるので∑ bn は発散する.
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例題� �
例題 6. 級数

∞∑
n=1

1

(2n+ 1)2
の収束・発散を判定せよ.

解答.

an =
1

(2n+ 1)2
, bn =

1

n2

として定理 5 に当てはめていく.

(2n+ 1)2 = 4n2 + 4n+ 1

≥ n2

なので両辺の逆数をとると不等式の向きが逆転して
1

(2n+ 1)2
≤ 1

n2
.

これは

an ≤ bn

を示している. したがってC = 1 として定理 5 に当てはめれば例題 4 の結果により
級数

∞∑
n=1

1

(2n+ 1)2
は収束する.

� �
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第4章 コーシーの判定法

� �
定理 6 (コーシーの判定法). 正項級数∑ an とする. lim

n→∞
n
√
an = r とする. このとき

(1) 0 ≤ r < 1 ならば∑ an は収束する.

(2) r > 1 ならば∑ an は発散する.� �
証明. (1) ε > 0で r+ε < 1なるものをとる. このときN = N(ε) ≥ 1が存在しn ≥ N

ならば

| n
√
an − r| < ε

が成り立つ. すなわち

r − ε < n
√
an < r + ε

なので

0 ≤ an < (r + ε)n (n ≥ N).

比較判定法により∑ an の収束がいえる.

(2) η > 0 で r − η ≥ 1 なるものをとる. このときM = M(η) ≥ 1 が存在し n ≥ M な
らば

| n
√
an − r| < η.

すなわち

r − η < n
√
an < r + η

なので

an ≥ 1 (n ≥ M).

したがって lim
n→∞

an = 0 とならないので∑ an は収束しない.
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収束・発散を決定づける情報の消失
r = 1 のときはコーシーの判定法から直ちに収束・発散を判定することができない. 実
際に, s > 0 に対して級数

∞∑
n=1

1

ns

にコーシーの判定法を適用することを考える. an = 1/ns とおくと

n
√
an =

1

( n
√
n)

s −−−→
n→∞

1

である*1. 級数∑ an は s > 1 のとき収束, s ≤ 1 のとき発散するのであるがコーシーの
判定法に当てはめると, その情報が失われてしまうのである. これは後に紹介するダラ
ンベールの判定法も同じ事情を抱える.

例題� �
例題 7. 級数

∞∑
n=1

(
n

2n+ 1

)n

の収束・発散を判定せよ.

解答.

an =

(
n

2n+ 1

)n

として定理 6 に当てはめていく.

n
√
an =

n

2n+ 1
=

1

2 +
1

n

なので

lim
n→∞

n
√
an =

1

2
.

これは定理 6 で

r =
1

2

の場合なので収束する.� �
*1 n

√
n = e

1
n logn と lim

n→∞

log n

n
= 0であることから lim

n→∞
n
√
n = lim

n→∞
e

1
n log n = e0 = 1 がいえる.
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� �
例題 8. −1 ≤ x < ∞ とする. 級数

∞∑
n=1

(
1 +

x

n

)n2

の収束・発散を考えよ.

解答.

an =
(
1 +

x

n

)n2

として定理 6 に当てはめていく.

n
√
an =

(
1 +

x

n

)n
なので

lim
n→∞

n
√
an = ex.

これは定理 6 で

r = ex

の場合である. したがって−1 ≤ x < 0 のとき r < 1 なので収束する. x > 0 のき
r > 1 なので発散する. x = 0 のきは an = 1 なので発散する.� �
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第5章 ダランベールの判定法

� �
定理 7 (ダランベールの判定法). 正項級数∑ an とする. lim

n→∞

an+1

an
= r とする. こ

のとき

(1) 0 ≤ r < 1 ならば∑ an は収束する.

(1) r > 1 ならば∑ an は発散する.� �
証明. (1) ε > 0で r+ε < 1なるものをとる. このときN = N(ε) ≥ 1が存在しn ≥ N

ならば ∣∣∣∣an+1

an
− r

∣∣∣∣ < ε

が成り立つ. すなわち
an+1

an
< r + ε.

上の関係式を繰り返し適用して
an+1

aN
=

an+1

an

an
an−1

an−1

an−2

· · · · · aN+1

aN
=

an+1

��an

��an

���an−1

���an−1

���an−2

· · · · · �
��aN+1

aN

< (r + ε)n+1−N

< (r + ε)n−N

なので
an+1

aN
< (r + ε)n−N (n ≥ N).

比較判定法により∑ an の収束がいえる.

(2) η > 0 で r − η ≥ 1 なるものをとる. このときM = M(η) ≥ 1 が存在し n ≥ M な
らば ∣∣∣∣an+1

an
− r

∣∣∣∣ < η.
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すなわち

r − η <
an+1

an

なので
an+1

an
> 1 (n ≥ M).

したがって an > aM ≥ 0 なので lim
n→∞

an = 0 が成り立たないから∑ an は収束し
ない.

収束・発散を決定づける情報の消失
コーシーの判定法における場合と同様に r = 1 のときはダランベールの判定法から直
ちに収束・発散を判定することができない. 実際に, s > 0 に対して級数

∞∑
n=1

1

ns

にダランベールの判定法を適用することを考える. an = 1/ns とおくと
an+1

an
=

ns

(n+ 1)s

=

(
n

n+ 1

)s

=
1(

1 +
1

n

)s

−−−→
n→∞

1

である. 級数∑ an は s > 1 のとき収束, s ≤ 1 のとき発散するのであるがダランベール
の判定法に当てはめると, その情報が失われてしまうのである.� �
注意 5. ここまで紹介した判定法の中には, すべての級数に有効な収束判定法という
のは無いのである.� �
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例題� �
例題 9. 級数

∞∑
n=1

n

2n
の収束・発散を判定せよ.

解答.

an =
n

2n

として定理 7 に当てはめていく.

an+1

an
=

2n

n
· n+ 1

2n+1

=
1

2

(
1 +

1

n

)
−−−→
n→∞

1

2
.

これは定理 7 で

r =
1

2

の場合なので収束する.� �
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� �
例題 10. 級数

∞∑
n=1

3n + 1

2n + 1
の収束・発散を判定せよ.

解答.

an =
3n + 1

2n + 1

として定理 7 に当てはめていく.

an+1

an
=

2n + 1

3n + 1
· 3

n+1 + 1

2n+1 + 1

=
2n + 1

2n+1 + 1
· 3

n+1 + 1

3n + 1

=
1 +

1

2n

2 +
1

2n

·
3 +

1

3n

1 +
1

3n

−−−→
n→∞

3

2
.

これは定理 7 で

r =
3

2

の場合なので発散する.� �
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第6章 級数に関係するいくつかの性質

コーシー列（復習）� �
数列 {an} がコーシー列であるとは, 任意の ε > 0 に対してN = N(ε) ≥ 1 が存在し
n,m ≥ N ならば

|an − am| < ε

が成り立つことをいう. このことは十分大きな番号N 以降の項は互いに ε 程度しか
離れていないということをいっている. また極限値の具体的な表示がなくても一般
項だけから収束を判定できる.� �
重要な事実として次のことがある.

収束することの必要十分条件（復習）� �
定理 8. {an}が収束することの必要十分条件は{an}がコーシー列であることである.� �
これより次の定理を得る.� �
定理 9 (コーシーの収束条件（級数）). 級数∑ an が収束することの必要十分条件
は, 任意の ε > 0 に対してN = N(ε) ≥ 1 が存在し n,m ≥ N (n > m) ならば∣∣∣∣∣

n∑
k=m+1

ak

∣∣∣∣∣ = |am+1 + · · ·+ an| < ε

が成り立つことである.� �
証明. 部分和を

Sn =
n∑

k=1

ak

とおく. この部分和が収束することの必要十分条件は {Sn} がコーシー列であること, す
なわち任意の ε > 0 に対してN = N(ε) ≥ 1 が存在し n,m ≥ N (n > m) ならば

|Sn − Sm| =

∣∣∣∣∣
n∑

k=1

ak −
m∑
k=1

ak

∣∣∣∣∣
= |am+1 + · · ·+ an| < ε
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が成り立つことである.

絶対収束� �
級数∑ an に対して各項の絶対値をとったもの

∑
|an| が収束するとき

∑
an は絶対

収束するという.� �� �
定理 10. 絶対収束する級数∑ an は収束する.� �
証明.

∑
|an| は収束するので, 任意の ε > 0 に対してN = N(ε) ≥ 1 が存在し n,m ≥

N (n > m) ならば

|am+1|+ · · ·+ |an| =
∣∣|am+1|+ · · ·+ |an|

∣∣ < ε

が成り立つ. 三角不等式により

|am+1 + · · ·+ an| ≤ |am+1|+ · · ·+ |an| < ε

なのでコーシーの収束条件により∑ an は収束する.

級数の積� �
{an}, {bn} に対して

cn = a1bn + a2bn−1 + · · ·+ anb1

=
n∑

k=1

akbn+1−k (n ≥ 1)

によって cn を定義する. このとき∑ cn を
∑

an と
∑

bn の積という.� �� �
定理 11.

∑
an,

∑
bn は絶対収束し

∑
an = S,

∑
bn = T であるとする. このとき∑

cn も収束し
∑

cn = ST が成り立つ.� �
証明. そのままの項と絶対値をつけた項の部分和を

Sn =
n∑

k=1

ak, Tn =
n∑

k=1

bk,

S̃n =
n∑

k=1

|ak|, T̃n =
n∑

k=1

|bk|

とおく.
∑

an,
∑

bn が絶対収束するという仮定より*1S̃, T̃ が存在し

S̃n ≤ S̃, T̃n ≤ T̃

*1収束列は有界なので
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が成り立つ.

|ck| ≤ |a1bk|+ |a2bk−1|+ · · ·+ |akb1|

なので
n∑

k=1

|ck| ≤ |a1b1|+ (|a1b2|+ |a2b1|) + · · ·+ (|a1bn|+ |a2bn−1|+ · · ·+ |anb1|)

≤ |a1|T̃n + |a2|T̃n−1 + · · ·+ |an|T̃1

≤ (|a1|+ |a2|+ · · ·+ an)T̃n

= S̃nT̃n

≤ S̃T̃

を得る.

c̃n =
n∑

k=1

|akbn+1−k|

とおく. c̃n に対しても同じ議論を繰り返すと
n∑

k=1

c̃k ≤ S̃nT̃n ≤ S̃T̃ .

したがって∑n
k=1 c̃k は上に有界な単調増加列であるから収束する. n ≥ 3 とすれば

n∑
k=1

ck − SnTn =
n∑

k=1

k∑
l=1

albk+1−l − SnTn

=
n∑

k=1

∑
l+m=k+1

albm −
n∑

p=1

ap

n∑
q=1

bq

=
n∑

k=1

∑
l+m=k+1

albm −
2n−1∑
k=1

∑
l+m=k+1

albm

なので ∣∣∣∣∣
n∑

k=1

ck − SnTn

∣∣∣∣∣ =
∣∣∣∣∣
2n−1∑
k=n+1

∑
l+m=k+1

albm

∣∣∣∣∣
≤

2n−1∑
k=n+1

c̃k

=
2n−1∑
k=1

c̃k −
n∑

k=1

c̃k

−−−→
n→∞

0
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なので ∣∣∣∣∣
n∑

k=1

ck − ST

∣∣∣∣∣ =
∣∣∣∣∣

n∑
k=1

ck − SnTn + SnTn − ST

∣∣∣∣∣
≤

∣∣∣∣∣
n∑

k=1

ck − SnTn

∣∣∣∣∣+ |SnTn − ST |

より
∞∑
k=1

ck = ST

を得る. 以上により示された.

指数関数の指数法則
定数 a ∈ R とする. 級数

∞∑
n=0

an

n!

は絶対収束することが知られている. これより以下を得る.� �
定理 12. a, b ∈ R とする. このとき(

∞∑
n=0

an

n!

)(
∞∑
n=0

bn

n!

)
=

∞∑
n=0

(a+ b)n

n!

が成り立つ.� �
証明.

an =
an

n!
, bn =

bn

n!

とおく. このとき

cn =
n∑

k=0

akbn−k

=
n∑

k=0

ak

k!

bn−k

(n− k)!

=
(a+ b)n

n!

なので示すべき等式が成り立つ.
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テイラーの定理によって

ea =
∞∑
n=0

an

n!

であることが知られているので上の定理は指数法則

eaeb = ea+b

が成り立つことをいっている.
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第7章 中間試験

この章に該当する回に中間試験を行う.





第II部

関数列
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第8章 関数列

以下の様な番号 n をパラメータとしてもつ関数のことを関数列という.

• x, x2, x3, . . . , xn, . . .

• xe−x, xe−2x, xe−3x, . . . , xe−nx, . . .

• sin x,
1

2
sin(2x),

1

3
sin(3x), . . . ,

1

n
sin(nx), . . .

関数列� �
区間 I ⊂ R とする. 番号 n に対して各項が関数 fn : I → R である列

f1, f2, . . . , fn, . . .

を関数列といい {fn} = {fn}∞n=1 とかく.� �
この章の冒頭に紹介したいくつかの関数列を式で書くと, それぞれ

fn(x) = xn, (x ∈ I, n ≥ 1),

fn(x) = xe−nx, (x ∈ I, n ≥ 1),

fn(x) =
1

n
sin(nx), (x ∈ I, n ≥ 1)

となる.� �
注意 6. 関数列とはどういうものかいまいちピンとこないかもしれない. 2変数関数

f(x, y) = xe−yx

とか

f(x, y) =
1

y
sin(yx)

などにはよく馴染みがあると思う. 関数列とは 2変数関数でひとつの変数を実数で
はなく自然数 y = n にしたものと考えても良い.� �
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収束域と各点収束� �
I ⊂ R で定義された関数列 {fn} に対して fn(x) (x ∈ I) が収束する部分集合, すな
わち

A =
{
x ∈ I; lim

n→∞
fn(x) が収束

}
を {fn} の収束域という. 点 x ∈ I において {fn(x)} が収束しない場合は点 x ∈ Iで
発散するという. x ∈ A に対して

f(x) = lim
n→∞

fn(x)

で得られる関数 f : A → R を {fn} の極限関数という. 以上のことを {fn} はA にお
いて f に各点収束するという.� �� �
点 x ∈ I を固定してしまえば {fn(x)} は数列なので各点収束の定義は初めから lim

の記号を使って書くことができる. しかし収束の細かい様子は x ∈ A に依存するこ
とを注意しておく必要がある. 各点収束していることを, 極限の定義を用いてかくと
次の様になる. 関数列 {fn} は x ∈ A を任意に固定したとき, 任意の ε > 0 に対して
N = N(x, ε) ≥ 1 が存在して n ≥ N ならば

|fn(x)− f(x)| < ε

をみたす. ここで, 気をつけたいのはN が x にも依存することである.� �� �
注意 7. 各点収束の意味であるということを断った上で

lim
n→∞

fn = f

とかくことがある.� �
各点収束の極限の調べ方の手順� �
区間 I ⊂ R で関数列 {fn} の各点収束の意味における極限操作は以下の様にする.

(1) x ∈ I を選んで固定する (定数扱いする).

(2) x が定数扱いなので数列 an = fn(x) として扱える.

(3) 数列 an = fn(x) の極限 lim
n→∞

an = lim
n→∞

fn(x) を計算する.

(4) {fn(x)} の極限値 lim
n→a

fn(x) = f(x) として x = a に対して f(a) を与える関数
として, 極限関数 f が定まる. これが {fn} の各点収束先である.

(5) (1) ∼ (4) の手順の中で収束域A が定まる.� �
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例題� �
例題 11. 区間 I = (0, 1) とする. 関数列 {fn} を

fn(x) = xn (x ∈ I, n ≥ 1)

と定義する. このとき以下の手順に沿って {fn} の各点収束における極限関数 f と
収束域A を求めよ.

(1) x ∈ I に対して lim
n→∞

fn(x) を求めよ.

(2) (1) の結果から各点収束における極限関数 f と収束域A を求めよ.

解答. (1) 任意に x ∈ I を固定する（定数扱いする）と 0 < x < 1 に対して

lim
n→∞

xn = 0

なので各点収束の意味で

lim
n→∞

fn(x) = 0

である.

(2) この場合の極限関数は f(x) = 0 (x ∈ I) ということである. また収束域A = I

である.� �
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� �
例題 12. 区間 I = [0,∞) とする. 関数列 {fn} を

fn(x) = xn (x ∈ I, n ≥ 1)

と定義する. このとき以下の手順に沿って {fn} の各点収束における極限関数 f と
収束域A を求めよ.

(1) x ∈ I に対して lim
n→∞

fn(x) を求めよ.

(2) (1) の結果から各点収束における極限関数 f と収束域A を求めよ.

解答. (1) 0 ≤ x < 1 の場合, x = 1 の場合と x > 1 の場合に分けて考える.

0 ≤ x < 1の場合
0 ≤ x < 1 に対して

lim
n→∞

xn = 0

なので

lim
n→∞

fn(x) = 0 (x ∈ [0, 1))

である.

x = 1の場合
次に x = 1 のときは fn(1) = 1 なので

lim
n→∞

fn(1) = 1.

x > 1の場合
x > 1 に対して

lim
n→∞

fn(x) = lim
n→∞

xn = ∞

である.

(2) (1) により, 収束域はA = [0, 1], 極限関数は

f(x) =

{
0 (0 ≤ x < 1)

1 (x = 1)

となる.� �
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第9章 一様収束の定義と特徴づけ

I ⊂ R とする. 関数列 {fn} が f : I → R に各点収束することを極限の定義に基づい
てかくと, x ∈ I とすると, 任意の ε > 0 に対してN = N(x, ε) ≥ 1 が存在し n ≥ N な
らば |fn(x)− f(x)| < ε が成り立つということである.� �
例 5. I = (0, 1) として {fn} を

fn(x) = xn (x ∈ I, n ≥ 1)

と定義する. 極限関数は f(x) = 0 (x ∈ I) である. これを極限の定義に当てはめて
みよう. x ∈ I とすると, 任意の ε > 0 に対して

N = 1 +
log ε

log x
>

log ε

log x

とすると n ≥ N のとき |fn(x)− f(x)| = xn ≤ xN < ε となる. つまりこの例ではN

は x に依存して決まっている.� �
極限の定義においてN ≥ 1 が x に対して一様に取れるというのが一様収束という概念
である.

一様収束� �
I ⊂ R とする. 関数列 {fn} が関数 f に I 上一様収束するとは, 任意の ε > 0 に対し
てN = N(ε) ≥ 1 が存在して n ≥ N ならば, 任意の x ∈ I に対して

|fn(x)− f(x)| < ε

が成り立つことをいう.� �
この定義を一様収束性の判定に直接, 適用させていくのは不便な場合があるので次の様
に使いやすい特徴づけを与える.� �
定理 13. 関数列 {fn} が関数 f に I 上一様収束することの必要十分条件は

lim
n→∞

(
sup
x∈I

|fn(x)− f(x)|
)

= 0

が成り立つことである.� �
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証明. （必要性）{fn} が一様収束していることを仮定する. そのことを定義通りにかく
と, 任意の ε > 0 に対してN = N(ε) ≥ 1 が存在して n ≥ N ならば, 任意の x ∈ I に対
して

|fn(x)− f(x)| < ε

2

が成り立つ. この式の上限をとると n ≥ N ならば

sup
x∈I

|fn(x)− f(x)| ≤ ε

2
< ε

を得る*1. このことは

lim
n→∞

(
sup
x∈I

|fn(x)− f(x)|
)

= 0

を意味する.

（十分性）逆に

lim
n→∞

(
sup
x∈I

|fn(x)− f(x)|
)

= 0

を仮定する. このことを定義通りにかくと, 任意の ε > 0 に対してN = N(ε) ≥ 1 が存
在し n ≥ N ならば

sup
x∈I

|fn(x)− f(x)| < ε

である. 上限 sup の意味により*2, 任意の x ∈ I に対して

|fn(x)− f(x)| ≤ sup
x∈I

|fn(x)− f(x)|

なので n ≥ N ならば, 任意の x ∈ I に対して

|fn(x)− f(x)| < ε

が成り立つ.� �
注意 8. 一様収束していれば各点収束している. 逆は一般に成り立たない.� �
*1上の様な不等式で極限操作や上限の操作をすると等号になることがあることに注意. なぜなら例えば

I = [0,∞) としたときに |fn(x) − f(x)| = ε

2
− 1

x+ 1
<

ε

2
となっているかもしれないから. この場合,

sup
x∈I

|fn(x)− f(x)| = ε

2
となるから一般の場合にも上限の式には等号を入れておかないとまずい.

*2上限 supとは最大数maxの一般化として導入されたものである. だから一般に, 任意の x ∈ I に対し
て F (x) ≤ sup

x∈I
F (x)である.
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一様収束の極限の調べ方の手順� �
区間 I ⊂ R で関数列 {fn} の一様収束の意味における極限操作は以下の様にする.

(1) まず各点収束を調べて極限関数 f を選ぶ. 一様収束する場合には各点収束先
が一様収束先にもなっているからである.

(2) 数列 an = sup
x∈I

|fn(x)− f(x)| として扱える.

(3) 数列 an の極限 lim
n→∞

an = lim
n→∞

(
sup
x∈I

|fn(x)− f(x)|
)
を計算する.

� �
例題� �
例題 13. I = (0, 1) とする. 関数列 {fn} を

fn(x) = xn (x ∈ I)

と定義する. このとき {fn} は一様収束するか調べよ.

解答. 各点収束で極限関数 f(x) = 0, x ∈ I に収束することは既に前の章で調べて
いる. では f(x) = 0, x ∈ I に一様収束するか調べてみよう.

sup
x∈I

|fn(x)− f(x)| = sup
x∈I

|xn − 0|

= sup
x∈I

|xn|

= 1

となる. したがって

lim
n→∞

(
sup
x∈I

|fn(x)− f(x)|
)

= lim
n→∞

(
sup
x∈I

|xn|
)

= 1

6= 0

なので一様収束しない. この例題の関数列は各点収束しても一様収束しない関数列
のひとつの例である.� �
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� �
例題 14. 定数 0 < a < 1 とする. Ia = (0, a) とする. 関数列 {fn} を

fn(x) = xn (x ∈ Ia)

と定義する. このとき {fn} は一様収束するか調べよ.

解答. 各点収束で極限関数 f(x) = 0, x ∈ Ia に収束することは既に調べているので,

この極限関数 f に一様収束するか調べてみよう.

sup
x∈Ia

|fn(x)− f(x)| = sup
x∈Ia

|xn − 0|

= sup
x∈Ia

|xn|

= an

となる. したがって

lim
n→∞

(
sup
x∈I

|fn(x)− f(x)|
)

= lim
n→∞

an = 0

なので一様収束する.� �
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� �
例題 15. I = R とする. 関数列 {fn} を

fn(x) = x2e−nx2

(x ∈ I)

と定義する. このとき {fn} は一様収束するか調べよ.

解答. まず各点収束の極限関数を求めよう. x ∈ I を固定する（定数扱い）. この
とき

lim
n→∞

fn(x) = lim
n→∞

x2e−nx2

= 0

であるa. すなわち f(x) = 0, x ∈ I に各点収束する. 次に y = nx2 とおくと

fn(x) = x2e−nx2

=
1

n
ye−y

≤ 1

n
sup

y∈[0,∞)

ye−y.

いま lim
y→∞

ye−y = 0 なので, M > 0 が存在し y ≥ M ならば

ye−y = |ye−y − 0| < 1

2

となる. また関数 y 7→ ye−y は連続関数なので有界区間において最大値

L = max
y∈[0,M ]

ye−y

が存在する. したがって

sup
y∈[0,∞)

ye−y ≤ max(1, L).

以上により

sup
x∈I

|fn(x)− f(x)| = sup
x∈I

|fn(x)− 0|

= sup
x∈I

fn(x)

≤ 1

n
max(1, L)

だからはさみ撃ちの原理により

lim
n→∞

(
sup
x∈I

|fn(x)− f(x)|
)

= 0.

すなわち {fn}は f に一様収束する.

ax2e−nx2

=
x2

1 + nx2 + 1
2! (nx

2)2 + · · ·
≤ 1

n
→ 0 (n → ∞)だから

� �





51

第10章 連続関数列の一様収束極限

コーシーの収束条件
この章のはじめにコーシーの収束条件を紹介しておこう. これは後に扱う連続関数列
と一様収束極限の関係に関する考察との繋がりは考えておらず独立した内容として扱う.� �
定理 14 (コーシーの収束条件（関数列）). 区間 I ⊂ R とする. 関数列 {fn} が I 上
一様収束するための必要十分条件は, 任意の ε > 0 に対してN = N(ε) ≥ 1 が存在
し n,m ≥ N ならば任意の x ∈ I に対して

|fn(x)− fm(x)| < ε

が成り立つことである.� �
証明. （必要性）一様収束性を仮定すると極限関数を f とすれば, 任意の ε > 0 に対し
てN = N(ε) ≥ 1 が存在し n ≥ N ならば任意の x ∈ I に対して

|fn(x)− f(x)| < ε

2

が成り立つ. したがって n,m ≥ N ならば任意の x ∈ I に対して

|fn(x)− fm(x)| = |fn(x)− f(x) + f(x)− fm(x)|
≤ |fn(x)− f(x)|+ |fm(x)− f(x)|
< ε.

（十分性）逆に任意の ε > 0 に対してN = N(ε) ≥ 1 が存在し n,m ≥ N ならば任意の
x ∈ I に対して

|fn(x)− fm(x)| <
ε

4

が成り立つと仮定する. すると各 x ∈ I に対して {fn(x)} はコーシー列となる. した
がって各 x ∈ I に対して極限値 f(x) が存在する. すなわちK = K(x, ε) ≥ 1 が存在し
n ≥ K ならば

|fn(x)− f(x)| < ε

4
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が成り立つ. したがって n ≥ N のとき, 任意の x ∈ I に対して L = max(N,K)*1 とお
くと

|fn(x)− f(x)| = |fn(x)− fL(x) + fL(x)− f(x)|
≤ |fn(x)− fL(x)|+ |fL(x)− f(x)|

<
ε

2
.

両辺の上限をとると

sup
x∈I

|fn(x)− f(x)| ≤ ε

2
< ε.

このことは {fn} が f へ一様収束していることを意味する.

連続関数列の一様収束極限
まず以下の言葉を導入する.

連続関数列� �
区間 I ⊂ R とする. 関数列 {fn} は各 n ≥ 1 に対して fn が I 上で連続であるとき I

上の連続関数列であるという.� �
次にこの章の本題である以下の事実を紹介する.� �
定理 15 (連続関数列の一様収束極限). 区間 I ⊂ R とする. {fn} を I上の連続関数
列であるとする. {fn} は関数 f に一様収束するとする. このとき f は I 上連続で
ある.� �
証明. a ∈ I を任意に選んで固定しておく. fn は f に一様収束するので, 任意の ε > 0

に対してN = N(ε) ≥ 1 が存在し n ≥ N ならば任意の x ∈ I に対して

|fn(x)− f(x)| < ε

3

が成り立つ. とくに

|fn(a)− f(a)| < ε

3
(n ≥ N)

が成り立つ. 次に上の N ≥ 1 に対して fN の連続性により δ = δ(a, ε) > 0 が存在し
x ∈ I が |x− a| < δ を満たすならば

|fN(x)− fN(a)| <
ε

3

*1K を通じて xに依存する.
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が成り立つ. したがって |x− a| < δ ならば

|f(x)− f(a)| = |f(x)− fN(x) + fN(x)− fN(a) + fN(a)− f(a)|
≤ |f(x)− fN(x)|+ |fN(x)− fN(a)|+ |fN(a)− f(a)|
< ε

が成り立つ. このことは f の連続性を示している.

この定理は一様収束は連続性を壊さない収束の種類であることをいっている. つまり
一様収束で極限を扱う枠組みにおいては連続性という性質が損なわれずに収束先に引き
継がれるのである.� �
例 6. I = [0, 1] とする. 関数列 {fn} を fn(x) = xn (x ∈ I, n ≥ 1) と定義する. {fn}
は連続関数列である. このとき, 極限関数は

f(x) =

{
0 (x ∈ [0, 1))

1 (x = 1)
.

f は不連続なので {fn} は f に一様収束しない. なぜなら一様収束していれば f は
連続ということになり矛盾するからa.

aもっと素朴に
fn(x)− f(x) =

{
xn (x ∈ [0, 1))

0 (x = 1)

より sup
x∈I

|fn(x)− f(x)| = 1なので一様収束しないという理解の仕方も可能である.� �
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第11章 関数列の微分・積分と極限の順
序交換可能性

� �
定理 16 (積分と極限の順序交換可能). 閉区間 I = [a, b] とする. 連続関数列 {fn} が
f に I 上一様収束するとする. このとき, 関数列 {∫ x

a
fn(t)dt

} は関数 ∫ x

a
f(t)dt に一

様収束していて積分と極限の順序交換

lim
n→∞

∫ x

a

fn(t)dt =

∫ x

a

lim
n→∞

fn(t)dt (x ∈ I)

が成り立つ.� �
証明.

Fn(x) =

∫ x

a

fn(t)dt (x ∈ I, n ≥ 1),

F (x) =

∫ x

a

f(t)dt (x ∈ I)

と定める. {fn} は f に一様収束するので, 任意の ε > 0 に対して η = ε/2(b− a) とおく
とN = N(η) ≥ 1 が存在し n ≥ N ならば

sup
x∈I

|fn(x)− f(x)| < η =
ε

2(b− a)

が成り立つ. このとき, n ≥ N ならば, 任意の x ∈ I に対して

|Fn(x)− F (x)| =
∣∣∣∣∫ x

a

(fn(t)− f(t)) dt

∣∣∣∣
≤
∫ x

a

|fn(t)− f(t)| dt

≤
∫ x

a

sup
t∈I

|fn(t)− f(t)| dt

<

∫ x

a

ηdt

=
ε

2(b− a)
· (b− a)

=
ε

2
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が成り立つ. したがって

sup
x∈I

|Fn(x)− F (x)| ≤ ε

2
< ε.

このことは一様収束を意味する. また積分と極限の順序交換が成り立つ.

C1級関数� �
区間 I ⊂ R とする. f : I → R は微分可能で f ′ が I 上連続であるとき I 上C1 級で
あるという. 関数列の場合も同様に I 上のC1級関数列という.� �� �
定理 17 (微分と極限の順序交換可能). 閉区間 I = [a, b] とする. I 上の C1 級関数
列 {fn} が関数 f に各点収束するとする. もし {fn′} が関数 g に一様収束するなら
ば以下のことが成り立つ.

(1) {fn} も f に一様収束する.

(2) f は I 上C1 級関数となる.

(3) f ′ = g であり

lim
n→∞

dfn
dx

=
d

dx
lim
n→∞

fn

が成り立つ.� �
証明. 定理 16 により {

∫ x

a
fn

′(t)dt} は ∫ x

a
g(t)dt に I 上一様収束する. また微分積分学の

基本定理より ∫ x

a

fn
′(t)dt = fn(x)− fn(a)

より

fn(x) = fn(a) +

∫ x

a

fn
′(t)dt

を得る. 左辺は f に各点収束していて, 右辺は {
∫ x

a
fn

′(t)dt} が ∫ x

a
g(t)dt に一様収束し,

数列 {fn(a)} は f(a) に収束するので {fn(a) + ∫ x

a
fn

′(t)dt
} は f(a) +

∫ x

a
g(t)dtに一様収

束する. したがって, 左辺も f に一様収束していて

f(x) =

∫ x

a

g(t)dt+ f(a) (x ∈ I)

が成り立つ. 再び微分積分学の基本定理を用いて両辺を微分すると

f ′(x) = g(x) (x ∈ I).
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これは

lim
n→∞

dfn
dx

=
d

dx
lim
n→∞

fn

を意味する. すなわち (3) がいえた. また g は連続関数列 {fn′} の一様収束極限なので
連続だから f はC1 級となる. すなわち (2) がいえた.

例題� �
例題 16. 閉区間 I = [0, 1] とする. 関数列 {fn} を

fn(x) = nxe−nx2

(x ∈ I, n ≥ 1)

と定める. このとき積分と極限の順序交換が成り立つか調べよ.

解答. x ∈ I に対して

lim
n→∞

fn(x) = 0

である. したがって先に極限をとってから積分すると∫ 1

0

lim
n→∞

fn(x)dx = 0.

一方で先に積分すると ∫ 1

0

fn(x)dx =

∫ 1

0

nxe−nx2

dx

=

[
−1

2
e−nx2

]1
0

=
1

2

(
1− e−n

)
なので

lim
n→∞

∫ 1

0

fn(x)dx =
1

2
.

したがって

lim
n→∞

∫ 1

0

fn(x)dx 6=
∫ 1

0

lim
n→∞

fn(x)dx

である. このことは {fn} が f = 0 に一様収束しないことも意味している.� �
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� �
例題 17. 閉区間 I = [0, 1] とする. 関数列 {fn} を

fn(x) =
1

n+ 1
xn+1 (x ∈ I, n ≥ 1)

と定める. このとき微分と極限の順序交換が成り立つか調べよ.

解答. まず極限関数

f(x) = 0 (x ∈ I)

に {fn} は一様収束することを確かめようa.

0 ≤ sup
x∈I

|fn(x)− f(x)| = 1

n+ 1
sup
x∈I

|xn+1|

≤ 1

n+ 1

−−−→
n→∞

0.

したがって f に一様収束していることが確かめられた. 次に fn
′(x) = xn なので

fn
′(1) = 1 −−−→

n→∞
1 6= 0 = f ′(1)

だから

lim
n→∞

fn
′ 6= d

dx
lim
n→∞

fn

となり極限と微分の順序交換が成り立たない.

aこの例では各点収束を示せば十分であるが一様収束まで示せるので示しておく.� �
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第12章 関数項級数の項別微分・項別積
分可能性

以下の様な関数列からなる級数を関数項級数という.

• x+ x2 + x3 + · · ·+ xn + · · ·

• xe−x + xe−2x + xe−3x + · · ·+ xe−nx + · · ·

• sin x+
1

2
sin(2x) +

1

3
sin(3x) + · · ·+ 1

n
sin(nx) + · · ·

関数項級数の一般的な定義は以下である.

関数項級数� �
次の様な関数列の各項からなる級数を関数項級数という.

∞∑
n=1

fn(x) = f1(x) + f2(x) + · · ·+ fk(x) + · · · .

部分和

Sk(x) =
k∑

n=1

fn(x)

を関数列 {Sk} とみなすことで関数項級数に対しての各点収束や一様収束を定義す
る.

∑
fn が収束するという場合は部分和 {

∑k
n=1 fn} の収束の意味である.� �� �

定理 18 (項別積分可能). 閉区間 I = [a, b] とする. 連続関数列 {fn} とする.
∑

fn が
関数S に I 上一様収束するとする. このとき, 関数列{∑n

k=1

∫ x

a
fk(t)dt

}は ∫ x

a
S(t)dt

に一様収束していて積分と級数の順序交換
∞∑
n=1

∫ x

a

fn(t)dt =

∫ x

a

∞∑
n=1

fn(t)dt (x ∈ I)

が成り立つ.� �
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証明. 新しく関数列を

gk(x) =
k∑

n=1

fn(x) (x ∈ I, n ≥ 1)

とおく. こうすると {gk} は定理 16 の仮定をみたしていて ∫ x

a
gk(t)dt =

∑k
n=1

∫ x

a
fn(t)dt

は ∫ x

a
S(t)dt に一様収束し, 積分と極限の順序交換が行える. すなわち

lim
k→∞

∫ x

a

gk(t)dt =

∫ x

a

lim
k→∞

gk(t)dt

=

∫ x

a

S(t)dt

=

∫ x

a

∞∑
n=1

fn(t)dt.

一方で有限和と積分は順序交換可能なので

lim
k→∞

∫ x

a

gk(t)dt = lim
k→∞

∫ x

a

k∑
n=1

fn(t)dt

= lim
k→∞

k∑
n=1

∫ x

a

fn(t)dt

=
∞∑
n=1

∫ x

a

fn(t)dt.

これより所望の式を得る.

� �
定理 19 (項別微分可能). 閉区間 I = [a, b] とする. I 上のC1 級の関数項級数∑ fn
が関数S に各点収束するとする. もし∑ fn

′ が関数 T に一様収束するならば以下の
ことが成り立つ.

(1)
∑

fn も S に一様収束する.

(2) S は I 上C1 級関数となる.

(3) S ′ = T であり
∞∑
n=1

dfn
dx

=
d

dx

∞∑
n=1

fn

が成り立つ.� �
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証明. 部分和

gk =
k∑

n=1

fn

を関数列 {gk} とみなして定理 17 に当てはめていく. 有限和と微分は順序交換可能な
ので

gk
′ =

(
k∑

n=1

fn

)′

=
k∑

n=1

fn
′

である. 仮定より {gk}は関数S に各点収束し gk
′ は関数T に一様収束する. よって {gk}

は関数S に一様収束しS は I 上C1 級である. これで (1), (2)がいえた. 以上よりS ′ = T

であり
∞∑
n=1

dfn
dx

= lim
k→∞

k∑
n=1

dfn
dx

= lim
k→∞

gk
′

=
d

dx
lim
k→∞

gk

=
d

dx

∞∑
n=1

fn

が成り立つ.

定理18の応用例
定数 0 < a < 1 に対して区間 I = [−a, a] とする. このとき関数項級数

∞∑
n=1

xn−1 (x ∈ I)

の一様収束性と項別積分について調べてみよう. まず関数項級数∑ xn−1 は I 上

S(x) =
1

1− x

に一様収束する. 実際に, 部分和が

Sk(x) =
k∑

n=1

xn−1 =
1− xk

1− x
(x ∈ I)
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なので

|Sk(x)− S(x)| = |x|k

1− x
≤ ak

1− a

より*1

sup
x∈I

|Sk(x)− S(x)| ≤ ak

1− a
−−−→
k→∞

0

となるからである. したがって定理 18 より
∞∑
n=1

∫ x

0

tn−1dt =

∫ x

0

1

1− t
dt.

左辺は
∞∑
n=1

∫ x

0

tn−1dt =
∞∑
n=1

xn

n

であり右辺は ∫ x

0

1

1− t
dt = − log(1− x)

である. x ∈ I ならば−x ∈ I が成り立つので, 結果の式の x のところに−x を代入して
両辺 (−1) 倍してやると, I 上における一様収束の意味で

∞∑
n=1

(−1)n+1xn

n
= log(1 + x) (x ∈ I).

exのテイラー展開の有界区間上の一様収束性
区間 I = [0, 1] とする. f(x) = ex (x ∈ I) に対して (k+1) 次のテイラーの定理を区間

[0, x] (0 < x ≤ 1) で適用すると

ex =
k∑

n=0

xn

n!
+

ecx

(k + 1)!
xk+1

をみたす cx ∈ (0, x) が存在する.

sup
0<x≤1

∣∣∣∣ ecx

(k + 1)!
xk+1

∣∣∣∣ ≤ e

(k + 1)!
−−−→
k→∞

0

なので

lim
k→∞

(
sup

0<x≤1

∣∣∣∣∣ex −
k∑

n=0

xn

n!

∣∣∣∣∣
)

= 0

*1x < |x| ≤ aなので 1− x ≥ 1− aより 1/(1− x) ≤ 1/(1− a)であることを用いた.
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である*2. 以上より f(x) = ex (x ∈ I) のテイラー展開は f に I 上一様収束する. また明
らかに任意の有界区間 I = [a, b] においても同様のことがいえる. また上述と同様のこ
とが三角関数のテイラー展開

sin x =
∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1,

cos x =
∞∑
n=0

(−1)n

(2n)!
x2n

に対しても成立する.

*2

sup
0≤x≤1

∣∣∣∣∣ex −
k∑

n=0

xn

n!

∣∣∣∣∣ = sup

{∣∣∣∣∣ex −
k∑

n=0

xn

n!

∣∣∣∣∣ ; 0 ≤ x ≤ 1

}

= sup

({∣∣∣∣∣ex −
k∑

n=0

xn

n!

∣∣∣∣∣ ; x = 0

}
∪

{∣∣∣∣∣ex −
k∑

n=0

xn

n!

∣∣∣∣∣ ; 0 < x ≤ 1

})

= sup

(
{0} ∪

{∣∣∣∣∣ex −
k∑

n=0

xn

n!

∣∣∣∣∣ ; 0 < x ≤ 1

})
= sup

(
{0} ∪

{
0 <

∣∣∣∣∣ex −
k∑

n=0

xn

n!

∣∣∣∣∣ ; 0 < x ≤ 1

})

= sup

{∣∣∣∣∣ex −
k∑

n=0

xn

n!

∣∣∣∣∣ ; 0 < x ≤ 1

}

= sup
0<x≤1

∣∣∣∣∣ex −
k∑

n=0

xn

n!

∣∣∣∣∣
であることに注意.
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第13章 ワイエルシュトラスのM判定
法, 冪級数

コーシーの収束条件
まず次の定理を紹介する. 定理 14 （コーシーの収束条件（関数列））より直ちに以下
を得る.� �
定理 20 (コーシーの収束条件（関数項級数）). 区間 I ⊂ R とする. 関数項級数∑ fn
が I 上一様収束するための必要十分条件は, 任意の ε > 0 に対してN = N(ε) ≥ 1

が存在し n,m ≥ N (n > m) ならば任意の x ∈ I に対して∣∣∣∣∣
n∑

k=m+1

fk(x)

∣∣∣∣∣ = |fm+1(x) + · · ·+ fn(x)| < ε

が成り立つことである.� �
証明. 関数項級数の部分和

Sk(x) =
k∑

n=1

fn(x)

に対して定理 14 を適用すれば良い.

ワイエルシュトラスのM判定法
この章の本題であるワイエルシュトラスのM判定法を紹介する.� �
定理 21 (ワイエルシュトラスのM判定法). I ⊂ R とする. 関数列 {fn} とする. 数
列 {Mn} の正項級数

∑
Mn が収束していて任意の n ≥ 1 に対して

sup
x∈I

|fn(x)| ≤ Mn

が成り立つとする. このとき関数項級数∑ |fn| は I 上一様収束する.� �
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証明. 任意の ε > 0 とする. N = N(ε) ≥ 1 が存在し n,m ≥ N (n > m) ならば
n∑

k=m+1

Mk =

∣∣∣∣∣
n∑

k=m+1

Mk

∣∣∣∣∣ < ε

である.

sup
x∈I

|fn(x)| ≤ Mn

なので n,m ≥ N (n > m) ならば任意の x ∈ I に対して∣∣∣∣∣
n∑

k=m+1

|fk(x)|

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑
k=m+1

Mk

∣∣∣∣∣
< ε.

定理 20 により主張する結果が得られた.� �
注意 9. |

∑n
k=m+1 fk| ≤

∑n
k=m+1 |fk| なので

∑
fn も I 上一様収束する.� �
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例題� �
例題 18. 区間 I = [0, π] とする. 関数項級数

∞∑
n=1

cos(nx)

2n
(x ∈ I)

について以下の問いに答えよ.

(1) ワイエルシュトラスのM判定法を適用して一様収束性を調べよ.

(2) 定理 18 を用いて
∫ π

0

(
∞∑
n=1

cos(nx)

2n

)
dx を計算せよ.

解答. (1) 数列 {Mn} を

Mn =
1

2n
(n ≥ 1)

と定義すると∑Mn = (1/2)
∑

(1/2n−1) は等比級数なので収束することは明らかで
ある. また

sup
x∈I

∣∣∣∣cos(nx)2n

∣∣∣∣ ≤ 1

2n
(n ≥ 1)

なのでワイエルシュトラスのM 判定法により
∞∑
n=1

cos(nx)

2n

は一様収束する.

(2) 定理 18 と (1) の結果により項別積分が可能である. したがって∫ π

0

(
∞∑
n=1

cos(nx)

2n

)
dx =

∞∑
n=1

1

2n

∫ π

0

cos(nx)dx

=
∞∑
n=1

1

2n

[
1

n
sin(nx)

]π
0

= 0.� �� �
注意 10. この例題では積分よりも先に無限和の計算をしようとすると計算が難しい
ことに注意しよう. すなわち関数項級数の極限関数 S の具体的な表示を知ることな
く積分の計算が出来たのである.� �
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原始関数の無限級数による表示
ディリクレ積分
ディリクレ積分 ∫ ∞

0

sin t

t
dt

について考える. まずディリクレ積分が収束することを確かめる. まず原点を含む広義
積分 ∫ 1

0

sin t

t
dt

の収束を示そう. f : [0,∞) → R を

f(t) =


sin t

t
(t > 0)

1 (t = 0)

と定義する. このとき, f は連続関数である. また F : [0, 1] → R を

F (ϵ) =

∫ 1

ϵ

f(t)dt (ϵ ∈ [0, 1])

と定義すると F は連続関数となる. したがって

lim
ϵ→+0

∫ 1

ϵ

sin t

t
dt = lim

ϵ→+0

∫ 1

ϵ

f(t)dt

= lim
ϵ→+0

F (ϵ)

= F (0)

なので原点を含む広義積分は収束する. 次に無限遠方における広義積分∫ ∞

1

sin t

t
dt

の収束を示そう. コーシーの収束条件をみたすことを示せばよい. t1 > t2 > 0 とする.∣∣∣∣∫ t1

1

sin t

t
dt−

∫ t2

1

sin t

t
dt

∣∣∣∣ = ∣∣∣∣∫ t1

t2

sin t

t
dt

∣∣∣∣
=

∣∣∣∣∫ t1

t2

1

t
(− cos t)′dt

∣∣∣∣
=

∣∣∣∣∣
[
−1

t
cos t

]t1
t2

−
∫ t1

t2

cos t

t2
dt

∣∣∣∣∣
≤ 1

t1
+

1

t2
+

∫ t2

t1

1

t2
dt

≤ 2

(
1

t1
+

1

t2

)
−−−−−→
t1>t2→∞

0.
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よって無限遠方における広義積分は収束する. したがって∫ ∞

0

sin t

t
dt

は収束する. つぎに∫ x

0

sin t

t
dt =

∞∑
n=1

(−1)n−1

(2n− 1)!(2n− 1)
x2n−1 (x ∈ [0,∞))

が成り立つことを示そう. 任意の x > 0 を固定する. t ∈ [0, x] に対して, テイラー展開

sin t = t− t3

3!
+

t5

5!
− · · ·

=
∞∑
n=1

(−1)n−1t2n−1

(2n− 1)!

が成り立つので
sin t

t
=

∞∑
n=1

(−1)n−1t2n−2

(2n− 1)!

である. また
gn(t) =

(−1)n−1t2n−2

(2n− 1)!
(t ∈ [0, x])

に対して

sup
t∈[0,x]

|gn(t)| ≤
x2n−2

(2n− 1)!

が成り立ち
∞∑
n=1

x2n−2

(2n− 1)!

は収束するのでワイエルシュトラスのM判定法により∑ gn は一様収束している. よって∫ x

0

sin t

t
dt =

∫ x

0

∞∑
n=1

(−1)n−1t2n−2

(2n− 1)!
dt

=
∞∑
n=1

∫ x

0

(−1)n−1t2n−2

(2n− 1)!
dt

=
∞∑
n=1

[
(−1)n−1t2n−1

(2n− 1)!(2n− 1)

]x
0

=
∞∑
n=1

(−1)n−1

(2n− 1)!(2n− 1)
x2n−1

となる. 複素解析やフーリエ解析（ディリクレ核）を応用することで∫ ∞

0

sin x

x
dx =

π

2

であることが知られている.
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フレネル積分
フレネル積分 ∫ ∞

0

sin(t2)dt∫ ∞

0

cos(t2)dt

について考える. まず広義積分が収束することを確かめよう. t1 > t2 > 0 とする.∣∣∣∣∫ t1

0

sin(t2)dt−
∫ t2

0

sin(t2)dt

∣∣∣∣ = ∣∣∣∣∫ t1

t2

sin(t2)dt

∣∣∣∣
=

∣∣∣∣∫ t1

t2

(cos(t2))′

−2t
dt

∣∣∣∣
=

∣∣∣∣∣
[
−cos(t2)

2t

]t1
t2

− 1

2

∫ t1

t2

cos(t2)

t2
dt

∣∣∣∣∣
≤ 1

t1
+

1

t2

−−−−−→
t1>t2→∞

0.

よって広義積分は収束する.

S(x) =

∫ x

0

sin(t2)dt (x ≥ 0),

C(x) =

∫ x

0

cos(t2)dt (x ≥ 0)

とおく. 任意の t > 0 とする. テイラー展開により

sin(t2) =
∞∑
n=0

(−1)n

(2n+ 1)!
t4n+2,

cos(t2) =
∞∑
n=0

(−1)n

(2n)!
t4n.

便宜上, 級数の和は n = 0 から始める形でかいた. これらの級数はワイエルシュトラス
のM判定法により収束することがわかる. したがって, 以下の計算の中で無限和と積分
の順序交換が可能で

S(x) =

∫ x

0

sin(t2)dt

=

∫ x

0

∞∑
n=0

(−1)n

(2n+ 1)!
t4n+2dt

=
∞∑
n=0

∫ x

0

(−1)n

(2n+ 1)!
t4n+2dt

=
∞∑
n=0

(−1)n

(2n+ 1)!(4n+ 3)
x4n+3
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となる. 同様に

C(x) =
∞∑
n=0

(−1)n

(2n)!(4n+ 1)
x4n+1.

複素解析等を応用することでフレネル積分の値が∫ ∞

0

sin(x2)dx =

∫ ∞

0

cos(x2)dx =
1

2

√
π

2

であることが知られている.

冪級数
冪級数 (巾級数)� �
係数 {an} を伴う冪乗 xn (n ≥ 1) の無限級数展開

∞∑
n=1

anx
n

の形の級数を冪級数という. 冪級数のことを巾級数とかくことがある. また, 冪級数
を整級数と呼ぶことがある. 関数列の収束域と同様に巾級数

∞∑
n=1

anx
n (x ∈ R)

が収束する部分集合, すなわち

A =

{
x ∈ R;

∞∑
n=1

anx
n = S(x) ∈ R

}

を巾級数
∞∑
n=1

anx
n の収束域という. 明らかに 0 ∈ A であるが, A 6= {0} の場合を考

える.� �� �
定理 22. 巾級数∑ anx

n は x0 6= 0 に対して収束するとする. このとき

(1)
∑

anx
n は (−|x0|, |x0|) において各点収束する.

(2)
∑

anx
n は (−|x0|, |x0|) に含まれる任意の有界閉区間において一様収束する.� �

証明. (1), (2) を証明するためには, 任意の 0 < c < |x0| に対して [−c, c] 上で∑ |anxn|
が一様収束することを示せば十分である. x ∈ [−c, c] とする. このとき∑∞

n=1 anx
n
0 は
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収束するので lim
n→∞

anx
n
0 = 0 である. したがって数列 {anxn

0} は有界である. すなわち
M > 0 が存在し

sup
n≥1

|anxn
0 | = M < ∞.

したがって

|anxn| =
∣∣∣∣xn

xn
0

anx
n
0

∣∣∣∣ ≤ M

∣∣∣∣xn

xn
0

∣∣∣∣ ≤ M

(
c

x0

)n

(x ∈ [−c, c]).

したがって

sup
x∈[−c,c]

|anxn| ≤ M

(
c

x0

)n

(n ≥ 1)

であり 0 < c < x0 だから
∞∑
n=1

(
c

x0

)n

は収束するのでワイエルシュトラスのM 判定法により∑ |anxn| は [−c, c] 上一様収束す
る.

収束半径� �
巾級数∑ anx

n の収束域A ⊂ R とする. このとき

r = sup
x∈A

|x| ≥ 0

を巾級数∑ anx
n の収束半径という. r = 0 のときA = {0} である.� �

次のことは直ちにいえる.� �
定理 23. 次が成り立つ.

(1) |x| < r ならば x ∈ A.

(2) |x| > r ならば x 6∈ A.� �
証明. (1) |x| < r ならば x0 ∈ A が存在し |x| < |x0| < r となる. したがって前の定理の
(1) により x ∈ A となる.

(2) |x| > r とすれば明らかに x 6∈ A である.

一般に, 収束域A と収束半径 r には以下の包含関係がある.

(−r, r) ⊆ A ⊆ [−r, r].

したがってA には端点−r, r を含むこともあれば含まないこともある. 含むかどうかは
考えている巾級数によって異なる.
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収束半径の判定法 1� �
定理 24. 巾級数∑ anx

n の収束半径を r > 0 とする. lim
n→∞

n
√
|an| が確定するとき

r =
1

lim
n→∞

n
√

|an|

が成り立つ.� �
証明. bn = |anxn| とおく. 正項級数∑ bn に対して

lim
n→∞

n
√
bn = |x| lim

n→∞
n
√

|an|

となる. したがって
|x| < 1

lim
n→∞

n
√

|an|

のとき∑ bn は収束するので
∑

anx
n も収束する. 一方で

|x| > 1

lim
n→∞

n
√

|an|

のときN ≥ 1 が存在し n ≥ N に対して

bn = |anxn| > 1

となる. すなわち
anx

n 6= 0 (n ≥ N)

である. したがって∑ anx
n は収束しない. このことは

r =
1

lim
n→∞

n
√

|an|

を意味している.

同じように次を得る.

収束半径の判定法 2� �
定理 25. 巾級数∑ anx

n の収束半径を r > 0 とする.
1

lim
n→∞

|an+1|
|an|

が確定するとき

r =
1

lim
n→∞

|an+1|
|an|

が成り立つ.� �
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証明. α = lim
n→∞

|an+1|
|an|

が確定するときに lim
n→∞

|an+1|
|an|

= lim
n→∞

n
√

|an| が成り立つことを示
せば十分である. 実際に

log |an+1| − log |an| = log
|an+1|
|an|

−−−→
n→∞

logα

となるので数列 {bn} を{
bn = log |an| − log |an−1| (n ≥ 2),

b1 = log |a1|

と定めれば bn −−−→
n→∞

logα であり

log |an|
n

=
log |a1|+ (log |a2| − log |a1|) + · · ·+ (log |an−1| − log |an−2|) + (log |an| − log |an−1|)

n

−−−→
n→∞

logα

が成り立つ. したがって

lim
n→∞

n
√

|an| = lim
n→∞

exp

(
log |an|

n

)
= exp (logα) = α.

� �
例 7. 巾級数

∞∑
n=1

(
n+ 1

2n+ 3

)n

xn の収束半径は r = 2 である. 実際

an =

(
n+ 1

2n+ 3

)n

(n ≥ 1)

とすれば

n
√
an =

n+ 1

2n+ 3
−−−→
n→∞

1

2

なので収束半径は

r =
1

lim
n→∞

n
√
an

= 2.

� �
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� �
例 8. 巾級数

∞∑
n=1

xn

n!
の収束半径は r = ∞ である. したがって収束域はA = R であ

る. 実際
an =

1

n!
(n ≥ 1)

とすれば
an+1

an
=

n!

(n+ 1)n!
=

1

n+ 1
−−−→
n→∞

0

なので収束半径は

r =
1

lim
n→∞

an+1

an

= ∞.

� �� �
例 9. 関数項級数

∞∑
n=1

xn! の収束域A と収束半径 r = sup
x∈A

|x| を求めようa. n! = l と
おくと l ∈ N である. したがって∑

n=1

xn! =
∑

l∈{l∈N; l=n! (n∈N\{0})}

alx
l

と巾級数の形にかける. ここで

al =

{
1 (l ∈ {l ∈ N; l = n! (n ∈ N \ {0})})
0 (その他)

である. よって, 収束半径は r = 1 となる. また r = ±1 のとき発散するb. よって収
束域はA = (−1, 1).

a関数項級数に対しては収束域, 収束半径を定義していないが, 巾級数と同じように定義する.
b実際に, x = ±1に固定して ε = 1/2とする. このとき, 任意の N ≥ 1 に対して l ≥ N が存在し

|alxl| = 1 > 1/2となる. したがって, lim
l→∞

alx
l 6= 0 なので

∑
l∈{l∈N; l=n! (n∈N\{0})}

alx
l は収束しない.

� �
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� �
例 10. 関数項級数

∞∑
n=1

(2n +1)x2n+1 の収束域A と収束半径 r = sup
x∈A

|x| を求めよう.

∞∑
n=1

(2n + 1)x2n の収束発散と
∞∑
n=1

(2n + 1)x2n+1 の収束発散は同値である. y = x2 と
おくと

∞∑
n=1

(2n + 1)x2n =
∞∑
n=1

(2n + 1)yn

である. an = 2n + 1 (n ≥ 1) とおくと, 巾級数
∞∑
n=1

(2n + 1)yn

の収束半径は

r =
1

lim
n→∞

an+1

an

=
1

2

となる. また y = 1/2 のとき発散する. したがって, 収束域は [0, 1/2) である. よっ
て, 元の級数

∞∑
n=1

(2n + 1)x2n

の収束半径は 1/
√
2, 収束域は (−1/

√
2, 1/

√
2) となる.� �

補足（複素積分の応用）
ディリクレ積分の値
ここでは複素積分を用いてディリクレ積分の値を求めてみよう. 複素関数f : C\{0} →

C を f(z) = eiz/z (z ∈ C \ {0}) と定義する. 0 < r < 1 < R に対して閉曲線C を

C ={z ∈ C; z = x+ iy, −R ≤ x ≤ −r, y = 0} ∪ {z ∈ C; z = reiθ, 0 ≤ θ ≤ π}
∪ {z ∈ C; z = x+ iy, r ≤ x ≤ R, y = 0} ∪ {z ∈ C; z = Reiθ, 0 ≤ θ ≤ π}

で定義する. C およびその内部において f は正則（解析的）なので∫
C

eiz

z
dz =

∫ −r

−R

eix

x
dx+

∫ 0

π

eire
iθ

reiθ
reiθidθ +

∫ R

r

eix

x
dx+

∫ π

0

eiReiθ

Reiθ
Reiθidθ = 0
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が成り立つ. ただし反時計回りを正とする.

lim
r→+0

(
sup
θ∈[0,θ]

|reiθ|

)
= lim

r→+0
r = 0

である. すなわち fθ(r) = reiθ (r > 0) は θ ∈ [0, π] に対して一様に 0 に収束する. また
g(z) = eiz (z ∈ C) は連続であるからC の有界閉集合上, 一様連続となる. よって

lim
r→+0

(
sup

θ∈[0,π]

∣∣∣eireiθ − 1
∣∣∣) = 0.

したがって以下の積分と極限の順序交換が可能で

lim
r→+0

∫ 0

π

eire
iθ

reiθ
reiθidθ = lim

r→+0

∫ 0

π

ieire
iθ

dθ =

∫ 0

π

lim
r→+0

ieire
iθ

dθ = −iπ.

また ∣∣∣∣∣
∫ π

0

eiReiθ

Reiθ
Reiθidθ

∣∣∣∣∣ =
∣∣∣∣i ∫ π

0

eiReiθdθ

∣∣∣∣
≤
∫ π

0

e−R sin θdθ

= 2

∫ π/2

0

e−R sin θdθ

≤ 2

∫ π/2

0

e−2Rθ/πdθ

=
[
− π

R
e−2Rθ/π

]π/2
0

=
π

R
(1− e−R)

−−−→
R→∞

0.

ここで

sin θ ≥ 2θ

π
(θ ∈ [0, π/2])

を用いた. そして直線上の積分について∫ −r

−R

eix

x
dx+

∫ R

r

eix

x
dx =

∫ R

r

eix − e−ix

x
dx =

∫ R

r

2i sin x

x
dx

が成り立つから r → +0, R → ∞ の極限をとると∫ ∞

0

sin x

x
dx =

π

2
.
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フレネル積分の値
ここでは複素積分を用いてフレネル積分の値を求めてみよう. 複素関数 f : C → C を

f(z) = e−z2 (z ∈ C) と定義する. R > 0 に対して閉曲線C を

C ={z ∈ C; z = x+ iy, 0 ≤ x ≤ R, y = 0} ∪ {z ∈ C; z = Reiθ, 0 ≤ θ ≤ π/4}

∪
{
z ∈ C; z =

1 + i√
2
r, 0 ≤ r ≤ R

}
で定義する. C およびその内部において f は正則（解析的）なので∫

C

e−z2dz =

∫ R

0

e−x2

dx+

∫ π/4

0

e−R2e2iθiReiθdθ +
1 + i√

2

∫ 0

R

e−it2dt = 0

が成り立つ. ただし反時計回りを正とする.∣∣∣∣∣
∫ π/4

0

e−R2e2iθiReiθdθ

∣∣∣∣∣ ≤
∫ π/4

0

e−R2 cos 2θRdθ

≤ R

∫ π/4

0

e−R2(1−4θ/π)dθ

=
π

4R

(
1− e−R2

)
−−−→
R→∞

0.

ここで
cos 2θ ≥ 1− 4

π
θ (θ ∈ [0, π/4])

を用いた. また
1 + i√

2

∫ R

0

e−it2dt =
1 + i√

2

∫ R

0

(
cos(t2)− i sin(t2)

)
dt,

lim
R→∞

∫ R

0

e−x2

dx =

√
π

2

である. 以上により,式を整頓して実部と虚部をまとめることでフレネル積分の値を得る.
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第14章 期末試験

この章に該当する回に期末試験を行う.
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