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第1章 線形空間

線形空間
R2 のベクトル x =

(
x1

x2

)
, y =

(
y1
y2

)
に対しては和の交換法則や結合法則が成り立

つことは良く知られている. また同様にスカラー倍 c ·x についても結合法則や分配法則
が成り立つことは良く知られている. ベクトルが和とスカラー倍についてみたす性質を
抽出し, 同じ性質をもつ元を集めた集合をベクトル空間という. 和とスカラー倍につい
てベクトルの様な単純な性質をもっていると扱いやすいのでその性質をみたすものだけ
考えようというのが線形空間を導入する動機である. 以下の文脈においてはK = R ま
たはC としてひと続きの議論においてはK を一度R またはC に決めたら固定する.

線形空間
集合X がK 上の線形空間*1であるとは, 任意の f, g ∈ X, α ∈ K に対して和

f + g ∈ X

とスカラー倍
αf ∈ X

が一意に定まり次の条件 (i) ∼ (viii) をみたすことをいう.

(i) f + g = g + f (f, g ∈ X).

(ii) (f + g) + h = f + (g + h) (f, g, h ∈ X).

(iii) 零元 g ∈ X が存在して f + g = f (f ∈ X). この g を 0 とかく.

(iv) f ∈ X に対して逆元 g ∈ X が存在して f + g = 0. この g を−f とかく.

(v) 1f = f.

(vi) (αβ)f = α(βf) (α, β ∈ K).

(vii) α(f + g) = αf + αg (f, g ∈ X).

(viii) (α + β)f = αf + βf (α, β ∈ K, f, g ∈ X).
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� �
注意. 上の定義で零元は存在すれば一意である. 実際に 0 の他に 0′ も零元だとす
れば

0 = 0 + 0′ = 0′ + 0 = 0′.

同様に上の定義において f ∈ X の逆元は存在すれば一意である. 実際に f の逆元
−f の他に逆元 h が存在するとすれば

−f = −f + 0 = −f + (f + h) = (−f + f) + h = 0 + h = h.

線形空間を定義するときに零元, 逆元が存在するという文言を一意的に存在すると
いう意味の文言に置き換えている文献もある.� �� �
例. n 次元ユークリッド空間 Rn はK = R として, 通常の和 x + y とスカラー倍
αx に関して線形空間である. これはほとんど明らかなので証明を紹介しないことに
する.� �
線形空間の次元

X の元 u1, u2, . . . , uk が線形独立であるとは
k∑

j=1

αjuj = 0 (αj ∈ C) =⇒ αj = 0 (1 ≤ ∀j ≤ k)

が成り立つことをいう. u1, u2, . . . , uk が線形独立でないとき線形従属であるという. X

の中に d 個の線形独立な元が存在し任意の (d+ 1) 個の元が線形従属であるときX は d

次元であるといいX の次元を

dimX = d

とかく. 任意の d に対して d 個の線形独立な元が存在するときX は無限次元であると
いい

dimX = ∞

とかく.

� �
通常の線形代数では, 次元が関係する議論においては有限次元の線形空間を中心に
扱う. 関数解析では本質的に無限次元の線形空間を扱う.� �
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� �
例. 閉区間 I = [a, b] とする.

C(I) = {f : I → K; f は I 上連続 }

において和と積をそれぞれ

(f + g)(x) = f(x) + g(x) (x ∈ I),

(αf)(x) = αf(x) (x ∈ I, α ∈ K)

と定める. このときC(I) は線形空間になる. また dimC(I) = ∞ である.� �
このことを確認してみよう. よく知られているように連続関数の和 f + g と定数倍 αf

はともに連続関数である.

線形空間であること
x ∈ I とする. このとき f(x) と g(x) はK の元なので

(f + g)(x) = f(x) + g(x) = g(x) + f(x) = (g + f)(x).

すなわち
f + g = g + f

がいえたことになる. また
((f + g) + h)(x) = (f + g)(x) + h(x)

= (f(x) + g(x)) + h(x)

= f(x) + (g(x) + h(x))

= f(x) + (g + h)(x)

= (f + (g + h))(x) (x ∈ I).

すなわち
(f + g) + h = f + (g + h).

零元は
g(x) = 0 (x ∈ I)

なる関数を零元とすれば良い. −f を
(−f)(x) = −(f(x)) (x ∈ I)

と定義すると
(f + (−f))(x) = f(x) + (−f)(x)

= f(x) + (−(f(x)))

= f(x)− (f(x))

= 0 (x ∈ I)
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となっているので−f は逆元である.

(1f)(x) = 1 · f(x) = f(x) (x ∈ I)

なので
1f = f

である. βf = g とおくと次の様になる
((αβ)f) (x) = (αβ)f(x)

= α(βf(x))

= αg(x)

= (αg)(x)

= (α(βf))(x) (x ∈ I)

なので
(αβ)f = α(βf).

残りも同様に示せる*2 .

dimC(I) = ∞であること

pd(x) = xd, d = 0, 1, 2, . . .

とする. 任意の d ∈ N ∪ {0} に対して
p0, p1, . . . , pd

が線形独立であることを確かめよう. αj ∈ K に対して
d∑

j=0

αjpj = 0

とすれば
d∑

j=0

αjx
j = 0 (x ∈ [a, b])

となる. 両辺を x で d 回微分すると
αd = 0

を得る. 次に
d−1∑
j=0

αjx
j = 0

の両辺を x で (d− 1) 回微分すると αd−1 = 0 を得る. この議論を繰り返すと
α0 = α1 = · · · = αd−1 = αd = 0

を得る. 以上により dimC(I) = ∞.

*2余裕があれば自分で確認してみよう.
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部分空間

線形空間X とする. 部分集合X0 ⊂ X とする. X0 がX の部分空間であるとは, 任意
の f, g ∈ X0 と任意の α ∈ K に対して{

f + g ∈ X0

αf ∈ X0

が成り立つことをいう. 線形部分空間ともいう.

部分空間の生成

線形空間X とする. 部分集合A ⊂ X とする.

M =

{
u =

k∑
j=1

αjuj; uj ∈ A, αj ∈ K (1 ≤ j ≤ k)

}

とおく. 明らかにM はX の部分空間である. 任意の f ∈ A は f ∈ M をみたすので
A ⊂ M である. また, 任意の部分空間M ′ でA ⊂ M ′ をみたすものに対してM ⊂ M ′

が成り立つ*3. したがってM はA を含む最小の部分空間である. M をA の生成する部
分空間という.
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第2章 ノルム空間

ノルム空間
K上の線形空間X とする. 次の条件をみたす写像 ‖ · ‖X : X → R をノルムという.

(i) ‖f‖X ≥ 0. ‖f‖X = 0 ⇐⇒ f = 0.

(ii) ‖αf‖X = |α| ‖f‖X (α ∈ K, f ∈ X).

(iii) ‖f + g‖X ≤ ‖f‖X + ‖g‖X (f, g ∈ X).

ノルムの定義された線形空間をノルム空間という. ノルム空間のことをノルムとあわせ
て (X, ‖ · ‖X) とかくことがある.

� �
注意. 絶対値はノルムの条件をみたす. 絶対値 | · | は数の大きさを測るがノルム ‖ · ‖
は線形空間の元（ベクトル）の大きさを測るためのものである.� �
点列
X をノルム空間とする. 番号 k ≥ 1 に対して fk ∈ X が唯一に決まるときこの対応

k 7→ fk により定まる {fk} ⊂ X を点列という.

点列 {fk} ⊂ X が f ∈ X に収束（ノルム収束）するとは, 任意の ε > 0 に対して
N = N(ε) ≥ 1 が存在し k ≥ N ならば

‖fk − f‖X < ε

が成り立つことをいう. このとき f ∈ X を極限点という. 収束することを

lim
k→∞

fk = f

とかく. X における収束という意味を強調するために lim
k→∞

fk = f in X とかくことが
ある.



12 第 2章 ノルム空間
� �
問題. lim

k→∞
‖fk − f‖X = 0 が成り立つとき lim

k→∞
‖fk‖X = ‖f‖X が成り立つことを証

明せよ.� �
ノルムによる距離の誘導

ノルム空間 (X, ‖ · ‖X) において

d(f, g) = ‖f − g‖X

と定義すると d はX における距離となる. これにより距離空間 (X, d) が定まる.

距離空間 (X, d) とする. A ⊂ X とする.

A =
{
a ∈ X; 任意の ε > 0 に対して B(a, ε) ∩ A 6= ∅

}
をA の閉包という*1. ここで, 開球B(a, ε) = {f ∈ X; d(f, a) < ε}.

X をノルム空間とする. A ⊂ X がX の部分空間であり, X のノルムにより定まる距
離空間として閉集合であるとき, A を閉部分空間という.

� �
命題. ノルム空間X の部分空間X0 ⊂ X の閉包X0 は閉部分空間である. ここで,

閉包は距離 d(f, g) = ‖f − g‖X を備える距離空間 (X, d) における意味である.� �
証明. f, g ∈ X0 とすると d(f, fk) = ‖f − fk‖X −−−→

k→∞
0, d(g, gk) = ‖g − gk‖X −−−→

k→∞
0 と

なる点列 {fk}, {gk} ⊂ X0 が存在する. X0 は部分空間だから fk + gk ∈ X0 ⊂ X0 である.

また d(fk + gk, f + g) = ‖fk + gk − (f + g)‖X ≤ ‖fk − f‖X + ‖gk − g‖X −−−→
k→∞

0 である.

閉集合の点列の極限点はその閉集合の元なので f + g ∈ X0 がいえる*2. 同様にαf ∈ X0,

α ∈ K. したがって部分空間である.

*2実際に {fk} ⊂ X0 が f ∈ X に対して ‖fk − f‖X −−−−→
k→∞

0をみたすとすれば, 任意の ε > 0に対して
N = N(ε) ≥ 1が存在し, k ≥ N ならば ‖fk−f‖X < ε/2.また {fk} ⊂ X0なので k ≥ N に対して g = g(k)
で g(k) ∈ B(fk; ε/2)∩X0をみたすものが存在する. したがって ‖g(k)−f‖X ≤ ‖g(k)−fk‖X+‖fk−f‖X < ε.

すなわち g(k) ∈ B(f ; ε) ∩X0 となり B(f ; ε) ∩X0 6= ∅だから f ∈ X0.
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閉部分空間の生成

ノルム空間X とする. 部分集合A ⊂ X とする.

M =

{
u =

k∑
j=1

αkuk; uj ∈ A, αj ∈ K (1 ≤ j ≤ k)

}

とおく. 前章で説明した様にM は A を含む最小の部分空間である. また, このことを
M はA の生成する部分空間であるというのであった. さらにX はA を含む最小の閉
部分空間になっている. すなわちA の生成する閉部分空間である.

コーシー・シュワルツの不等式� �
定理 (コーシー・シュワルツの不等式). x, y ∈ Rn に対して

|x · y| ≤

(
n∑

j=1

x2
j

)1/2( n∑
j=1

y2j

)1/2

が成り立つ. ここでユークリッド内積 x · y =
∑n

j=1 xjyj.� �
証明. y = 0 のときは成り立つので y 6= 0 とする.

α = − x · y
n∑

j=1

y2j

とおく. このとき

0 ≤ (x+ αy) · (x+ αy) =
2∑

j=1

x2
j −

|x · y|2
n∑

j=1

y2j

を得る. この式の右辺の 2番目の項を移項して求める不等式を得る.
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� �
例. n 次元ユークリッド空間Rn は

‖x‖Rn =

(
n∑

j=1

x2
j

)1/2

(x = (x1, x2, · · · , xn) ∈ Rn)

をノルムとするノルム空間となる. ここで

‖x‖2Rn = x · x

であることに注意. 実際に (Rn, ‖ · ‖Rn) がノルム空間であることを確かめてみよう.

まず (i) は明らかである. (ii) に関しては

‖αx‖Rn =

(
n∑

j=1

(αxj)
2

)1/2

=

(
α2

n∑
j=1

x2
j

)1/2

=
√
α2

(
n∑

j=1

x2
j

)1/2

= |α|

(
n∑

j=1

x2
j

)1/2

= |α|‖x‖Rn .

(iii) はコーシー・シュワルツの不等式を用いる.

‖x+ y‖2Rn = (x+ y) · (x+ y)

= ‖x‖2Rn + 2x · y + ‖y‖2Rn

≤ ‖x‖2Rn + 2‖x‖Rn‖y‖Rn + ‖y‖2Rn

= (‖x‖Rn + ‖y‖Rn)2

なので (iii) を確かめることができた.� �� �
例. n 次元複素空間Cn は

‖z‖Cn =
√

‖x‖2Rn + ‖y‖2Rn (z = x+ iy ∈ Cn)

をノルムとするノルム空間となる. ここで

‖x‖2Rn = x · x

であることに注意.� �
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� �
例. K = R またはC とする. n 次のK 行列全体の集合を

M(n;K) = {A = (aij); aij ∈ K (1 ≤ i, j ≤ n)}

とかく. M(n;K) は線形空間である.

‖A‖M(n;K) =

√ ∑
1≤i,j≤n

aij2

と定義するとノルムとなる.� �� �
例. 閉区間 I = [a, b] とする. C(I) は

‖f‖C(I) = max
x∈I

|f(x)|

をノルムとするノルム空間となるa.

a絶対値 | · |の性質を用いれば直ちにいえることである. 自分で確かめてみよう.� �� �
例. I = [0, 2π] とする. fk(x) =

1

k
sin(kx) (x ∈ I) で定まる {fk} は C(I) の点列と

なる. このとき

‖fk‖C(I) =
1

k
max
x∈I

| sin(kx)| = 1

k

となるので

lim
k→∞

‖fk − 0‖C(I) = lim
k→∞

1

k
= 0

なので lim
k→∞

fk = 0 である.� �
ノルムの同値性
線形空間に定義されるノルムはひとつとは限らない.

線形空間X とする. X において定義されたふたつのノルム ‖ · ‖X,1, ‖ · ‖X,2 が同値で
あるとは

c‖u‖X,2 ≤ ‖u‖X,1 ≤ C‖u‖X,2

が成り立つことをいう.
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� �
例. X = R2 において

‖x‖1 =
√

x2
1 + x2

2, ‖x‖2 =
2∑

j=1

|xj|

と
‖x‖3 = max

j=1,2
|xj|

の同値なノルムがある.� �� �
定理. K 上の線形空間X とする. dimX = d < ∞ とする. このときX の任意のふ
たつのノルム ‖ · ‖X,1 と ‖ · ‖X,2 は同値である.� �
証明. 任意の f ∈ X は基底 {e1, e2, . . . , ed} を用いて

f =
d∑

j=1

cjej

と一意的に表される.

‖f‖0 = max
1≤j≤d

|cj|

はX におけるノルムとなる. ‖ ·‖X をXにおける任意のノルムとする. 写像φ : Kd → R
を

φ(c) =

∥∥∥∥∥
d∑

j=1

cjej

∥∥∥∥∥
X

(c = (c1, c2, . . . , cd))

と定義する. φ は明らかに連続である. S を

S =

{
c = (c1, c2, . . . , cd); max

1≤j≤d
|cj| = 1

}
と定めると S はKn のコンパクト集合である. したがってφ は S において最大値M と
最小値mをとる. またm > 0 である. なぜならm = 0 のとき c = 0 であるが 0 6∈ S だ
からである. したがって

0 < m ≤

∥∥∥∥∥
d∑

j=1

cjej

∥∥∥∥∥
X

≤ M (c = (c1, c2, . . . , cd) ∈ S).

f 6= 0 とする.

g =
f

‖f‖0
とすれば ‖g‖0 = 1 なので

g =
d∑

j=1

c′jej
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の係数は S に属する. したがって

m ≤ ‖g‖X =

∥∥∥∥∥
d∑

j=1

c′jej

∥∥∥∥∥
X

≤ M.

一方で
‖g‖X =

‖f‖X
‖f‖0

なので
m‖f‖0 ≤ ‖f‖X ≤ M‖f‖0.

f = 0 の場合は両辺 0 なので上の不等式は成り立つ.
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第3章 バナッハ空間

バナッハ空間
点列 {fk} ⊂ X がコーシー列であるとは, 任意の ε > 0 に対してN = N(ε) ≥ 1 が存
在し k, l ≥ N ならば

‖fk − fl‖X < ε

をみたすことをいう.

完備なノルム空間 X をバナッハ空間という. すなわちノルム空間X の任意のコー
シー列がX に極限点をもつときX をバナッハ空間という.

� �
例. 微分積分学において R の完備性は知られている. 同様に Rn と Cn もそれぞれ
のノルムにおける収束の意味で完備である. すなわちバナッハ空間である.� �� �
定理. 閉区間 I = [a, b] とする. C(I) はノルム

‖f‖C(I) = max
x∈I

|f(x)|

を備えたバナッハ空間である.� �
証明. {fk} ⊂ C(I) をコーシー列とする. すなわち任意の ε > 0 に対してN = N(ε) ≥ 1

が存在し k, l ≥ N ならば
max
x∈I

|fk(x)− fl(x)| <
ε

4

が成り立つ. x ∈ I を固定すると
|fk(x)− fl(x)| ≤ ‖fk − fl‖C(I)

が成り立つので k, l ≥ N ならば
|fk(x)− fl(x)| <

ε

4
. (0.1)

すなわち {fk(x)} *1 はK におけるコーシー列である. したがってK の完備性より収束
*1{fk}と {fk(x)}は別のものであることに注意.
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先 f(x) が存在して fk(x) → f(x) が成り立つ. ただしこれは x ∈ I に依存して決まる
ので

∃N1 = N1(x) ∈ N : k ≥ N1 =⇒ |fk(x)− f(x)| < ε

4

の意味である. 次に f ∈ C(I) を示そう. N∗ = max(N,N1) とすると k ≥ N ならば

|fk(x)− f(x)| = |fk(x)− fN∗(x) + fN∗(x)− f(x)|
≤ |fk(x)− fN∗(x)|+ |fN∗(x)− f(x)|

<
ε

2
(0.2)

が任意の x ∈ I に対して成り立つ. この k ≥ N は x に依存せず選べることに注意. した
がって k ≥ N に対して

max
x∈I

|fk(x)− f(x)| ≤ ε

2
< ε.

このことは連続関数列 {fk} が f に一様収束することをいっているので f も連続である
ことがいえる*2. コーシー列 {fk} が C(I) の意味で f ∈ C(I) に収束することが示され
た.� �
例. 閉区間 I = [0, 1] とする. C(I) にリーマン積分によるノルム

‖f‖R1(I) =

∫ 1

0

|f(x)|dx

を導入したものはノルム空間となるが完備でない. すなわちノルム空間であるがバ
ナッハ空間でない.� �
実際に {fk} を

fk(x) =


1 (0 ≤ x ≤ 1/2)

−2kx+ k + 1 (1/2 ≤ x ≤ 1/2 + 1/2k)

0 (1/2 + 1/2k ≤ x ≤ 1)

と定義すると k > l ≥ 1 に対して

‖fk − fl‖R1(I) =
1

4l
− 1

4k
→ 0 (k, l → ∞).

*2連続関数列の一様収束先の極限は連続関数であることが知られている. 実際, 次の三角不等式より連
続であることが従う：

|f(x)− f(y)| = |f(x)− fk(x) + fk(y)− f(y) + fk(x)− fk(y)|
≤ |f(x)− fk(x)|+ |fk(y)− f(y)|+ |fk(x)− fk(y)|.
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したがってコーシー列である. ところが fk はR1(I) ノルムで

f(x) =

{
1 (0 ≤ x ≤ 1/2)

0 (1/2 < x ≤ 1)

に収束する. これは不連続関数であるから完備性はないということになる.� �
例. I ⊂ R に対して

C1(I) = {f ∈ C(I); f ′ ∈ C(I)}

と定義する. f ∈ C1(I) に対して

‖f‖C1(I) = ‖f‖C(I) + ‖f ′‖C(I)

と定義すると (C1(I), ‖ · ‖C1(I)) はバナッハ空間になる.� �
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第4章 バナッハの不動点定理

バナッハ空間による距離の誘導で定まる完備距離空間� �
定理. バナッハ空間X とする. 距離を

d(f, g) = ‖f − g‖X

と定めることにより (X, d) は完備距離空間となる.� �
証明. ノルムの三角不等式が成り立つこと及びノルム収束に関する完備性から明らかで
ある.

縮小写像

距離空間 (X, d) とする. 写像 Φ : X → X が縮小写像であるとは定数 0 < r < 1 が存
在して

d (Φ(f), Φ(g)) ≤ rd(f, g) (f, g ∈ X)

をみたすことをいう. 定数 0 < r < 1 を縮小定数という.

� �
定理 (バナッハの不動点定理a). 完備距離空間 (X, d) とする. Φ : X → X は縮小定
数 0 < r < 1 をもつ縮小写像であるとする. このとき Φ の不動点が一意的に存在す
る. すなわち f ∈ X が一意的に存在し

f = Φ(f)

をみたす.

a縮小写像の原理とも呼ばれる.� �
証明. f0 ∈ X を任意に選んで固定する.

fk = Φ(fk−1) (k ≥ 1)
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と定めると k > l に対して

d(fk, fl) ≤ d(fk, fk−1) + d(fk−1, fk−2) + · · ·+ d(fl+1, fl)

となる. ここで Φ が縮小写像ということから

d(fk, fk−1) = d(Φ(fk−1), Φ(fk−2))

≤ rd(fk−1, fk−2)

...

≤ rk−1d(f1, f0)

となるから

d(fk, fl) ≤ (rk−1 + rk−2 + · · ·+ rl)d(f1, f0)

=
rl(1− rk−l)

1− r
d(f1, f0)

≤ rl

1− r
d(f1, f0).

k > l → ∞ とすると右辺は 0 に収束するので {fk} はX のコーシー列である. X は完
備距離空間なので極限点 f ∈ X を持つ.

d(Φ(fk), Φ(f)) ≤ rd(fk, f) → 0 (k → ∞)

だから {Φ(fk)} は Φ(f) に収束するので

0 ≤ d(Φ(f), f) ≤ d(Φ(f), fk) + d(fk, f)

≤ rd(f, fk−1) + d(fk, f) → 0 (k → ∞)

なので
f = Φ(f).

不動点の存在が示された. 次に一意性を示そう. f ′ 6= f, f ′ ∈ X が存在し*1

f ′ = Φ(f ′)

をみたすとする. このとき

d(f, f ′) = d(Φ(f), Φ(f ′)) ≤ rd(f, f ′)

を得る. 移項すると
(1− r)d(f, f ′) ≤ 0

となり矛盾する. したがって f = f ′ ということになる. 以上により不動点は一意的であ
る.

*1これは f の微分を意味する記号ではないことに注意. 混同する恐れのない文脈においてはこの様な書
き方をすることがある.
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第5章 バナッハの不動点定理の微分方
程式論への応用

微分方程式
I = [0,∞), T > 0 とする. 微分方程式の初期値問題

du

dt
= f(u) (t ∈ (0,∞)),

u(0) = u0 ∈ R

について考える. ただし f ∈ C(R) はリプシッツ条件

|f(x)− f(y)| ≤ L|x− y| (x, y ∈ R)

をみたす. ここでリプシッツ定数 L > 0.

積分方程式

微分方程式にともなう積分方程式を

u(t) = u0 +

∫ t

0

f(u(s))ds (t ∈ I)

とする.

� �
定理 (デュアメルの原理). I = [0,∞) に対して u ∈ C1(I) が微分方程式の解である
ことの必要十分条件は u ∈ C1(I) が積分方程式の解であることである.� �
証明. 区間 I において u は連続関数 f に対して

du

dt
= f(u)

をみたすとする. u ∈ C1(I) である. t ∈ I として両辺を [0, t] で積分すると

u(t)− u(0) =

∫ t

0

f(u(s))ds.
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すなわち
u(t) = u0 +

∫ t

0

f(u(s))ds

が成り立つ. 逆に
u(t) = u0 +

∫ t

0

f(u(s))ds

をみたすとすると両辺を微分して
du

dt
= f(u).

� �
定理 (グロンウォールの不等式). 定数 α ∈ R とする. I = [a, b] とする. g, h ∈ C(I)

かつ g(t) > 0 (t ∈ I) とする. このとき

h(t) ≤ α +

∫ t

a

g(s)h(s)ds (t ∈ I)

ならば
h(t) ≤ α exp

(∫ t

a

g(s)ds

)
(t ∈ I)

が成り立つ.� �
証明.

H(t) = α +

∫ t

a

g(s)h(s)ds

とおく. このとき

H ′(t) = g(t)h(t) ≤ g(t)H(t)

となる. 両辺に e−
∫ t
a g(s)ds をかけると

H ′(t)e−
∫ t
a g(s)ds ≤ g(t)H(t)e−

∫ t
a g(s)ds

なので (
H(t)e−

∫ t
a g(s)ds

)′
≤ 0.

したがって
H(t)e−

∫ t
a g(s)ds ≤ H(a) = α

なので
h(t) ≤ H(t) ≤ αe

∫ t
a g(s)ds.
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有界連続関数の空間を

Cb(I) =

{
u ∈ C(I)); ‖u‖Cb(I) = sup

t≥0
|u(t)| < ∞

}
と定義する.

このとき, C(I) (I = [a, b])の最大値ノルムによる完備性の証明と同様にしてCb(I) (I =

[0,∞)) はバナッハ空間となることが示される.� �
定理. リプシッツ定数 L > 0 に対して k > L とする.

X =

{
u ∈ C(I); ‖u‖X = sup

t≥0

(
e−kt|u(t)|

)
< ∞

}
と定義する. ここで I = [0,∞). 積分方程式は初期値 u0 ∈ R ごとに一意的な時間大
域解 u ∈ X をもつ. また一意性はC1(I) において保証される.� �
証明. まずX がノルム空間となることはほとんど明らかである. {ul} ⊂ X をコーシー
列とする. このとき

‖ul − um‖X = sup
t≥0

(
e−kt|ul(t)− um(t)|

)
= sup

t≥0

∣∣e−ktul(t)− e−ktum(t)
∣∣ −−−−→

l,m→∞
0.

したがって {e−ktul} ⊂ Cb(I) は Cb(I) のコーシー列となる Cb(I) は完備性があるので
v ∈ Cb(I) が存在して

lim
l→∞

‖e−ktul − v‖Cb(I) = 0

となる. このとき u = ektv とおくと u ∈ X であり
‖ul − u‖X = sup

t≥0
e−kt|ul(t)− ektv|

= sup
t≥0

|e−ktul(t)− v(t)|

= ‖e−ktul − v‖Cb(I)

−−−→
l→∞

0.

以上によりX の完備性が示された.

d(u, v) = ‖u− v‖X

と定める. (X, d) は完備距離空間である. 写像 Φ : u 7→ Φu を

Φu(t) = u0 +

∫ t

0

f(u(s))ds (t ≥ 0)
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と定義する. Φ が縮小写像であることを示そう. まず u ∈ X に対してΦu ∈ X を示さな
ければいけない. f(u) ∈ C(I) なので Φu ∈ C(I) は明らかであるが, 次の評価を得る:

‖Φu‖X ≤ |u0|+ sup
t≥0

∣∣∣∣e−kt

∫ t

0

f(u(s))ds

∣∣∣∣
≤ |u0|+ sup

t≥0
e−kt

∫ t

0

(L|u(s)|+ |f(0)|) ds

= |u0|+ sup
t≥0

e−kt

∫ t

0

ekse−ks (L|u(s)|+ |f(0)|) ds

≤ |u0|+ sup
t≥0

e−kt

(
L

k
(ekt − 1)‖u‖X + |f(0)|t

)
< ∞.

したがってΦu ∈ X. 最後に縮小写像であることをいって終わりである. そのために次の
様に評価する:

‖Φu− Φv‖X = sup
t≥0

e−kt

∣∣∣∣∫ t

0

f(u(s))− f(v(s))ds

∣∣∣∣
≤ sup

t≥0
e−kt

∫ t

0

ekse−ks |f(u(s))− f(v(s))| ds

≤ sup
t≥0

e−kt

∫ t

0

eksLe−ks |u(s)− v(s)| ds

≤ L sup
t≥0

(
e−kt

∫ t

0

eksds

)
‖u− v‖X

=
L

k
‖u− v‖X .

いま L/k < 1 なので Φ : X → X は縮小写像である. したがって初期値問題の時間大域
解 u ∈ X が一意的に存在する. 明らかに u ∈ C1(I) でもある. さらにグロンウォールの
不等式を適用すれば一意性はC1(I) においていえる. 実際に u, ũ ∈ C1(I) をふたつの解
とすれば

|u(t)− ũ(t)| ≤
∫ t

0

L |u(s)− ũ(s)| ds

なので u = ũ ということになる.

� �
注意. 縮小写像の不動点として構成した一意的な解はX ∩ C1(I) ⊂ C1(I) に属すの
であるが一意性はもっと広い集合C1(I) でいえている. すなわちC1(I) 全体で一意
性が保証されているということであって, もしC1 級の解が他の方法で見つかればそ
れは上で構成した解と同一のものである.� �
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� �
注意. 関数 u(t) = e−|t−1| (t ∈ I) は u ∈ Cb(I) であるが t = 1 において微分可能でな
い. すなわち u 6∈ C1(I) である.� �
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第6章 数列空間

ヤングの不等式� �
補題 (ヤングの不等式). a, b > 0 とする. 1 < p, q < ∞ は 1/p+1/q = 1 をみたすと
する. このとき

ab ≤ 1

p
ap +

1

q
bq

が成り立つ.� �
証明. 条件により

(p− 1)(q − 1) = (p− 1)
1

p− 1
= 1

が成り立つ. したがって関数

y = xp−1

を x について解くと

x = y
1

p−1

= yq−1

とかける. 同じ x-y 平面内に y = xp−1 と x = yq−1 のグラフを描く. これらのグラフが
囲む面積をそれぞれ S1, S2 とすると

S1 =

∫ a

0

xp−1dx =

[
1

p
xp

]a
0

=
1

p
ap,

S2 =

∫ b

0

yq−1dy =

[
1

q
yq
]b
0

=
1

q
bq

となる. 面積を比較することにより

ab ≤ S1 + S2 =
1

p
ap +

1

q
bq

である. 以上によりヤングの不等式が証明された. 等式が成り立つのは b = ap−1 または
a = bq−1 のときに限る.
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数列空間
1 ≤ p ≤ ∞ とする.

lp =

a = {ak}∞k=1 ; ‖a‖lp =

(
∞∑
k=1

|ak|p
)1/p

< ∞

 (1 ≤ p < ∞),

l∞ =

{
a = {ak}∞k=1 ; ‖a‖l∞ = sup

k≥1
|ak| < ∞

}
(p = ∞)

を数列空間という.

� �
補題 (ヘルダー不等式). 1 ≤ p, q ≤ ∞ は 1/p+ 1/q = 1 をみたすとする. このとき

∞∑
k=1

|akbk| ≤ ‖a‖lp ‖b‖lq

が成り立つ.� �
証明. p = ∞ または q = ∞ の場合は明らか. ヤングの不等式より

1

‖a‖lp ‖b‖lq

∞∑
k=1

|akbk| =
∞∑
k=1

|ak||bk|
‖a‖lp ‖b‖lq

≤ 1

p ‖a‖plp

∞∑
k=1

|ak|p +
1

q ‖b‖qlq

∞∑
k=1

|bk|q

=
1

p
+

1

q
= 1

両辺を ‖a‖lp ‖b‖lq 倍して求める不等式を得る. ここで分母が 0 の場合は求める不等式は
明らかに成り立っている.� �
定理. 1 ≤ p ≤ ∞ とする. lp はバナッハ空間である.� �
証明. α ∈ C, a = {ak}, b = {bk} とする. αa ∈ lp は明らか. 1 ≤ p < ∞ とする.

|ak + bk|p ≤ (|ak|+ |bk|)p

≤ (max (|ak|, |bk|) + max (|ak|, |bk|))p

= 2p max (|ak|, |bk|)p

= 2p max (|ak|p, |bk|p)
≤ 2p max (|ak|p + |bk|p, |ak|p + |bk|p)
= 2p(|ak|p + |bk|p)
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なので a+ b ∈ lp. 次にノルムの条件を満たすことを示す. 三角不等式だけ自明ではない
のでこれだけ示そう.

‖a+ b‖plp =
∞∑
k=1

|ak + bk|p

=
∞∑
k=1

|ak + bk||ak + bk|p−1

≤
∞∑
k=1

(|ak|+ |bk|)|ak + bk|p−1

≤
∞∑
k=1

(
|ak||ak + bk|p−1 + |bk||ak + bk|p−1

)
≤ (‖a‖lp + ‖b‖lp) ‖a+ b‖p−1

lp

両辺を ‖a+ b‖1−p
lp 倍して求める結果を得る. ここで分母が 0 になる場合においては明ら

かに成り立っている. p = ∞ のときは

|ak + bk| ≤ |ak|+ |bk| ≤ sup
k≥1

|ak|+ sup
k≥1

|bk| (k ≥ 1)

より三角不等式が示される. これでノルムの条件を満たすことが示された. {a(j)}∞j=1 ⊂ lp

をコーシー列とする. すなわち任意の ε > 0 に対してN = N(ε) ≥ 1 が存在し

∥∥a(j) − a(l)
∥∥
lp
=

(
∞∑
k=1

∣∣∣a(j)k − a
(l)
k

∣∣∣p)1/p

<
ε

4
(j, l ≥ N)

が成り立っている. したがって

sup
k≥1

∣∣∣a(j)k − a
(k)
k

∣∣∣ ≤ ( ∞∑
k=1

∣∣∣a(j)k − a
(l)
k

∣∣∣p)1/p

<
ε

4
(j, l ≥ N)

なので
{
a
(j)
k

}∞

j=1
はC のコーシー列でもある. C は完備なので ck ∈ C が存在し

lim
j→∞

a
(j)
k = ck.

有限和と極限操作は交換できるので任意のm ≥ 1 に対してN1 = N1(ε,m) ≥ 1 が存在
し j ≥ N1 ならば (

m∑
k=1

∣∣∣a(j)k − ck

∣∣∣p)1/p

<
ε

4
.



34 第 6章 数列空間

c = {ck}∞k=1 とおく. N∗ = max(N,N1) とおくとノルムに対する三角不等式を使って(
m∑
k=1

∣∣∣a(j)k − ck

∣∣∣p)1/p

=

(
m∑
k=1

∣∣∣a(j)k − a
(N∗)
k + a

(N∗)
k − ck

∣∣∣p)1/p

≤

(
m∑
k=1

∣∣∣a(j)k − a
(N∗)
k

∣∣∣p)1/p

+

(
m∑
k=1

∣∣∣a(N∗)
k − ck

∣∣∣p)1/p

≤

(
∞∑
k=1

∣∣∣a(j)k − a
(N∗)
k

∣∣∣p)1/p

+

(
m∑
k=1

∣∣∣a(N∗)
k − ck

∣∣∣p)1/p

<
ε

2
(j ≥ N)

が成り立つ. この式の左辺の変数 j と右辺はm に依存しないので(
∞∑
k=1

∣∣∣a(j)k − ck

∣∣∣p)1/p

= sup
m≥1

(
m∑
k=1

∣∣∣a(j)k − ck

∣∣∣p)1/p

≤ ε

2
< ε (j ≥ N).

したがって, a(j) − c ∈ lp より c ∈ lp を得る. また上式は lp-収束の意味で

lim
j→∞

a(j) = c

であることを意味する. これで完備性が示された.
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第7章 ルベーグ空間

ルベーグ空間

開集合Ω ⊂ Rn とする.

Lp(Ω) =

{
f : Ω → C; ‖f‖Lp(Ω) =

(∫
Ω

|f(x)|pdx
)1/p

< ∞

}
(1 ≤ p < ∞),

L∞(Ω) =

{
f : Ω → C; ‖f‖L∞(Ω) = ess. sup

x∈Ω
|f(x)| < ∞

}
(p = ∞)

をルベーグ空間という. Ω を省略しても混乱を生じない場合は Lp = Lp(Ω) と書くこと
がある.

� �
注意. ここで上の定義で f はルベーグ可測関数を考えており Lp の意味で

f = 0 ⇐⇒ f(x) = 0 (a.e. x ∈ Ω)

として定義している. すなわち

f(x) = g(x) (a.e. x ∈ Ω)

のとき f = g とする. また本質的上限を

ess. sup
x∈Ω

|f(x)| = inf {M > 0; |f(x)| ≤ M (a.e. x ∈ Ω)}

と定義している.� �� �
補題 (ヘルダー不等式). 1 ≤ p, q ≤ ∞ は 1/p+ 1/q = 1 をみたすとする. このとき∫

Ω

|f(x)g(x)|dx ≤ ‖f‖Lp ‖g‖Lq

が成り立つ.� �
証明. 数列のときと同様にヤングの不等式を用いて証明できる.
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� �
補題. 1 ≤ p ≤ ∞ とする. {fk} ⊂ Lp(Ω) は∑∞

k=1 ‖fk‖Lp < ∞ をみたすとする. こ
のとき∑∞

k=1 fk は a.e. で収束し∑∞
k=1 fk ∈ Lp(Ω) かつ∥∥∥∥∥

∞∑
k=1

fk

∥∥∥∥∥
Lp

≤
∞∑
k=1

‖fk‖Lp

が成り立つ.� �
証明. 1 ≤ p < ∞ とする.(

m∑
k=1

|fk|

)p

↗

(
∞∑
k=1

|fk|

)p

(m → ∞)

なので単調収束定理*1 より(∫
Ω

(
∞∑
k=1

|fk(x)|

)p

dx

)1/p

=

(
lim

m→∞

∫
Ω

(
m∑
k=1

|fk(x)|

)p

dx

)1/p

= lim
m→∞

∥∥∥∥∥
m∑
k=1

|fk|

∥∥∥∥∥
Lp

≤ lim
m→∞

m∑
k=1

‖fk‖Lp

=
∞∑
k=1

‖fk‖Lp < ∞.

したがって∑∞
k=1 fk は a.e. で収束するので主張が示せた. p = ∞ のときは

∞∑
k=1

|fk| ≤
∞∑
k=1

‖fk‖L∞

がほとんどいたるところいえるので示せた.� �
定理. 1 ≤ p ≤ ∞ とする. Lp(Ω) はバナッハ空間である.� �
証明. f, g ∈ Lp ならば f + g ∈ Lp であることは数列のときと同じようにして示せる. 次
に三角不等式を示そう. 1 < p < ∞ とする.

|f + g|p = |f + g|p−1|f + g| ≤ |f ||f + g|p−1 + |g||f + g|p−1

*1fk ≥ 0 (a.e.), fk ↗ f (k → ∞) (a.e.) ならば lim
k→∞

∫
Ω

fkdm̃ =

∫
Ω

fdm̃.
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より

‖f + g‖pLp ≤
∫
Ω

(
|f(x)||f(x) + g(x)|p−1 + |g(x)||f(x) + g(x)|p−1

)
dx

≤ ‖f‖Lp ‖f + g‖p−1
Lp + ‖g‖Lp ‖f + g‖p−1

Lp

= (‖f‖Lp + ‖g‖Lp) ‖f + g‖p−1
Lp .

したがって三角不等式が示された. p = 1,∞ の場合も同様. 完備性を示したい. {fk} を
コーシー列とする. すなわち, 任意の ε > 0 に対して, N = N(ε) ≥ 1 が存在し k, l ≥ N

ならば

‖fk − fl‖Lp <
ε

2
.

とくに ε = 1/2j−1 に対してN = N(1/2j−1) ≥ 1 が存在して k, l ≥ N に対して

‖fk − fl‖Lp <
1

2j

が成り立つ. よって {kj} ⊂ N で

kj ≥ N(1/2j−1), kj ↗ ∞ (j → ∞)

をみたすものが存在し*2

∥∥fkj+1
− fkj

∥∥
Lp <

1

2j

が成り立つ.
∑∞

j=1(1/2
j) < ∞ なので

∞∑
j=1

∥∥fkj+1
− fkj

∥∥
Lp < ∞.

よって, 上の補題より
∞∑
j=1

(
fkj+1

− fkj
)
∈ Lp.

したがって

f = fk1 +
∞∑
j=1

(
fkj+1

− fkj
)

*2実際に {kj} を kj =

{
N(1/2) (j = 1)

kj = max
(
kj−1 + j,N(1/2j)

)
(j ≥ 2)

によって定義すれば良い. また述

べていないがN は自然数である.
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とおけば f ∈ Lp. さらに

f = fk1 +
l−1∑
j=1

(fkj+1
− fkj) +

∞∑
j=l

(fkj+1
− fkj)

= fk1 + (fk2 − fk1) + · · ·+ (fkl − fkl−1
) +

∞∑
j=l

(fkj+1
− fkj)

= fkl +
∞∑
j=l

(fkj+1
− fkj)

より

f − fkl =
∞∑
j=l

(fkj+1
− fkj)

なので, 上の補題より

lim
l→∞

‖fkl − f‖Lp ≤ lim
l→∞

∞∑
j=l

∥∥fkj+1
− fkj

∥∥
Lp

= lim
l→∞

(
∞∑
j=1

‖fkj+1
− fkj‖Lp −

l−1∑
j=1

‖fkj+1
− fkj‖Lp

)
= 0.

すなわち, 任意の ε > 0 に対して L = L(ε) ≥ 1 が存在し l ≥ L ならば

‖fkl − f‖Lp <
ε

2

である. また L1 ≥ 1 が存在し l ≥ L1 ならば kl ≥ N をみたす. よって l∗ = max(L,L1)

とおくと k ≥ N に対して

‖fk − f‖Lp ≤
(
‖fk − fkl∗‖Lp + ‖fkl∗ − f‖

Lp

)
<

ε

2
+

ε

2

= ε.

これでコーシー列が収束することが示された.
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� �
例. lim

|x|→∞
f(x) 6= 0 をみたす f ∈ L1(R) が存在する.

実際, 区間の幅が 1/2k となる様に Ik = (k, k + 1/2k) とすると各 k ≥ 1 に対して Ik
は可測集合である.

f(x) =

{
1 (x ∈ I ≡

⋃∞
k=1 Ik)

0 (x ∈ R \ I)

とすると ∫
R
|f(x)|dx = |I|

=
∞∑
k=1

|Ik|

=
∞∑
k=1

1

2k
< ∞.

したがって f ∈ L1(R). しかし lim
x→+∞

f(x) 6= 0 である.� �
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第8章 ヒルベルト空間

ノルム空間は絶対値（大きさ）の一般化としてノルムを導入した線形空間であった.

これに対して内積空間とは通常の幾何ベクトルに対する内積を公理化したものを備えた
線形空間である.

n次元ユークリッド空間Rnにおける任意のベクトルx ∈ Rnは正規直交基底{e1, e2, . . . , en}
を用いて

x =
n∑

j=1

(x, ej)Rnej

とかける. ここで, (·, ·)Rn は内積である. またユークリッド空間においては内積を導入
することで幾何学的な性質を内積を用いて表せることがある. この様な背景から無限次
元のベクトル空間においても内積という構造を入れると都合のよいことがある.

内積空間

K 上の線形空間X とする. 次の (i)–(iv) を満たす写像 (·, ·)X : X ×X → K を内積と
いう.

(i) (f, f)X ≥ 0, f ∈ X. (f, f)X = 0 ⇐⇒ f = 0.

(ii) (f, g)X = (g, f)X (f, g ∈ X).

(iii) (f1 + f2, g)X = (f1, g)X + (f2, g)X (f1, f2, g ∈ X).

(iv) (αf, g)X = α(f, g)X (α ∈ K, f, g ∈ X).

内積が定義された線形空間X を内積空間という.

内積空間X において内積を用いて

‖f‖X =
√

(f, f)X (f ∈ X)

と定める.
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ノルムと同じ記号を使ったがまだノルムであるかわからない. 以下ではこれがノルム
となることを示す.� �
補題 (コーシー・シュワルツの不等式). 内積空間X とする.

|(f, g)X | ≤ ‖f‖X ‖g‖X (f, g ∈ X)

が成り立つ.� �
証明. 証明には内積の性質のみ用いるので, 通常のユークリッド空間に対する場合と同
じである.� �
定理 (内積から定まるノルム). 内積空間X とする. 上に定めた

‖f‖X =
√
(f, f)X (f ∈ X)

はX のノルムである.� �
証明. 三角不等式が成り立つことを示せば良い. シュワルツの不等式より

‖f + g‖2X = (f + g, f + g)X

= ‖f‖2X + (f, g)X + (g, f)X + ‖g‖2X
≤ ‖f‖2X + 2|Re(f, g)X |+ ‖g‖2X
≤ ‖f‖2X + 2|(f, g)X |+ ‖g‖2X
≤ ‖f‖2X + 2‖f‖X‖g‖X + ‖g‖2X
= (‖f‖X + ‖g‖X)2

なので三角不等式が成り立つことが示された. これでノルムであることがいえたことに
なる.

ヒルベルト空間

内積空間X がノルム

‖f‖X =
√

(f, f)X (f ∈ X)

に関して完備であるときX をヒルベルト空間という.
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� �
例. Rn は最も身近なヒルベルト空間のひとつである. Rn の内積は以下で定まる通
常の内積である.

(x, y)Rn = x · y =
n∑

j=1

xjyj.

� �� �
例. Cn はヒルベルト空間である. 内積は以下で定義される.

(z1, z2)Cn = (x1 + iy1) · (x2 + iy2)

= x1 · x2 + y1 · y2 + iy1 · x2 − ix1 · y2

ここで zj = xj + iyj (xj, yj ∈ Rn) である. またノルムは

‖z‖Cn =
√
‖x‖2Rn + ‖y‖2Rn (z = x+ iy ∈ Cn).� �� �

例. 数列空間 l2 に

(a, b)l2 =
∞∑
k=1

akbk

と定義すると (·, ·)l2 は内積になっていて l2 はヒルベルト空間となる.� �� �
問題. l2 がヒルベルト空間であることを証明せよ. ただし完備性は既知として用い
てよい.� �� �
例. ルベーグ空間 L2(Ω) とする.

(f, g)L2 =

∫
Ω

f(x)g(x)dx

と定義すると (·, ·)L2 は内積になっていてL2(Ω) はヒルベルト空間となる. これは簡
単なので先程の例を模倣して自分で確かめてみよう.� �
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第9章 射影定理

直交
内積空間X とする. 部分空間A,B ⊂ X が互いに直交するとは

(f, g)X = 0 (f, g ∈ A)

が成り立つことをいう. このことをA ⊥ B とかく. ⊥ を垂直記号という.

内積空間X とする. f ∈ X とする.

{f} ⊥ B = f ⊥ B

とかく. また f ∈ A と g ∈ B に対して (f, g)X = 0 であることを f ⊥ g とかく.

� �
定理. f ∈ X とする. f ⊥ X ならば f = 0 である.� �
証明. 仮定により任意の g ∈ X に対して

(f, g)X = 0

が成り立つ. とくに g = f に対しても成り立つので
‖f‖2X = (f, f)X = 0.

以上により f = 0.

直交補空間
内積空間X とする. 部分空間 L ⊂ X とする.

L⊥ = {f ∈ X; f ⊥ L}

を L の直交補空間という.
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� �
定理. L⊥ は閉部分空間である. ここで, 閉集合である部分空間を閉部分空間という.� �
証明. {fk} ⊂ L⊥ を f ∈ X に収束する点列とする. このとき f ∈ L⊥ を示ば良い.

|(f − fk, g)X | ≤ ‖fk − f‖X ‖g‖X −−−→
k→∞

0

より

0 = (fk, g)X −−−→
k→∞

(f, g)X = 0

を得る. g ∈ L の任意性より閉集合であることが示された. また f1, f2 ∈ L⊥, α, β ∈ K

に対して (αf1+βf2, h)X = 0 を任意の g ∈ L に対して得る. よって部分空間である.� �
定理. 内積空間X とする. f, g ∈ X とする. f ⊥ g のとき

‖f + g‖2X = ‖f‖2X + ‖g‖2X

が成り立つ.� �
証明. 内積を展開することにより直ちに得ることができる.� �
定理 (射影定理). ヒルベルト空間X とする. 閉部分空間 L ⊂ X とする. 任意の
f ∈ X は

f = g + h (g ∈ L, h ∈ L⊥)

と一意的に分解される.� �
証明. まず一意性を示す.

f = g + h = g′ + h′ (g, g′ ∈ L, h, h′ ∈ L⊥)

と分解されたとする. このとき

g − g′ = h′ − h

で h′ − h ∈ L⊥ なので

‖g − g′‖2X = (g − g′, h′ − h)X = 0

となる. すなわち g = g′. したがって h = h′ も得るので分解の仕方は一意的であること
がわかった.
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次に分解が可能であることを示す.

δ = inf
ξ∈L

‖f − ξ‖X

とおくと {ξk} ⊂ L で

lim
k→∞

‖f − ξk‖X = δ

なるものが存在する*1. 以下の等式が成り立つ（中線定理と呼ばれるものである）

‖f + g‖2X + ‖f − g‖2X
= (f + g, f + g)X + (f − g, f − g)X

= ‖f‖2X + ‖g‖2X + (f, g)X + (g, f)X + ‖f‖2X + ‖g‖2X − (f, g)X − (g, f)X

= 2(‖f‖2X + ‖g‖2X).

したがって

‖(f − ξk) + (f − ξj)‖2X + ‖(f − ξk)− (f − ξj)‖2X = 2 ‖f − ξk‖2X + ‖f − ξj‖2X .

(1/2)(ξk + ξj) ∈ L なので

δ2 ≤
∥∥∥∥f − ξk + ξj

2

∥∥∥∥2
X

.

したがって

0 ≤ ‖ξk − ξj‖2X = 2
(
‖f − ξk‖2X + ‖f − ξj‖2X

)
− 4

∥∥∥∥f − ξk + ξj
2

∥∥∥∥2
X

≤ 2
(
‖f − ξk‖2X + ‖f − ξj‖2X

)
− 4δ2

→ 0 (k, j → ∞)

となる. したがって {ξk} はX のコーシー列なのでX において収束するが L は閉部分
集合なので g ∈ L が存在し ξk → g (k → ∞) となる. したがって

‖f − g‖X = ‖f − ξk + ξk − g‖X ≤ ‖f − ξk‖X + ‖g − ξk‖X

なので

0 ≤ ‖f − g‖X − δ ≤ ‖f − ξk‖X − δ + ‖g − ξk‖X −−−→
k→∞

0.

よって

δ = ‖f − g‖X
*1下限の特徴づけより任意の k ≥ 1 に対して ξk ∈ L が存在し δ ≤ ‖f − ξk‖X < δ + 1/k が成り立つ.
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を得る.

h = f − g

とおく. h ⊥ L を示せば証明が終わる. 任意に固定した ξ ∈ L に対して

φ(t) = ‖h− γtξ‖2X , t ∈ R

とおく. ここで γ = (h, ξ). g + γtξ ∈ L なので δ2 = φ(0) ≤ φ(t), t ∈ R. 内積を計算し

φ(t) = ‖h‖2X − 2|γ|2t+ |γ|2t2 ‖ξ‖2X
= ‖h‖2X + |γ|2t(t‖ξ‖2X − 2)

= φ(0) + |γ|2t(t‖ξ‖2X − 2).

もし γ 6= 0 ならば t ∈ (0, 2/‖ξ‖2X) に対して φ(t) < φ(0) = δ2. となり矛盾. したがって
γ = 0. すなわち h ⊥ L.

直和

内積空間X とする. 閉部分空間 L1, L2 ⊂ X が L1 ⊥ L2 をみたすとき

L1 ⊕ L2 =
{
f ∈ X; f = f1 + f2 (f1 ∈ L1, f2 ∈ L2)

}
を L1 と L2 の直和という.

� �
注意 (射影定理の解釈). 射影定理より上の f1, f2 は f に対して一意に定まる. 射影
定理のいっていることは L ⊂ X を閉部分空間とすれば

X = L⊕ L⊥

が成り立つということである.� �
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第10章 正規直交系

正規直交系

内積空間X とする. A ⊂ X が正規直交系であるとは, 任意の f, g ∈ A に対して

(f, g)X =

{
1 (f = g)

0 (f 6= g)

が成り立つことをいう.

� �
例. もっとも簡単な例のひとつであるがX = R3 において

e1 =

1

0

0

 , e2 =

0

1

0

 , e3 =

0

0

1


に対して

A = {e1, e2, e3}

とするとA ⊂ X は正規直交系である.� �� �
定理. X = L2(−π, π) とする. A = {(2π)−1/2eikx}k∈Z は正規直交系である.� �
証明. L2(−π, π) の内積を取れば良い.
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1. j 6= kのとき

((2π)−1/2eijx, (2π)−1/2eikx)L2([−π,π]) = (1/2π)

∫ π

−π

eijxeikxdx

= (1/2π)

∫ π

−π

ei(j−k)xdx

=
1

2πi(j − k)
[ei(j−k)x]π−π

= 0.

2. j = kのとき

((2π)−1/2eijx, (2π)−1/2eikx)L2([−π,π]) = (1/2π)

∫ π

−π

eijxeikxdx

= (1/2π)

∫ π

−π

ei(j−k)xdx

= (1/2π)

∫ π

−π

dx = 1.

以上でA = {(2π)−1/2eikx}k∈Z が正規直交系であることがいえた. このことはまた
dimL2(−π, π) = ∞

であることを意味している.� �
定理. 内積空間X とする. {fk} ⊂ X を正規直交系とする. このとき(

k∑
j=1

αjfj,

k∑
m=1

βmfm

)
X

=
k∑

j=1

αjβj

が成り立つ.� �
証明. 証明は演習とする.� �
定理 (ベッセルの不等式). ヒルベルト空間X とする. {fk} ⊂ X を正規直交系とす
る. 任意の f ∈ X に対して

∞∑
k=1

|(f, fk)X |2 ≤ ‖f‖2X

が成り立つ.� �
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証明. αj = (f, fj)X とおくと k ≥ 1 に対して

0 ≤

∥∥∥∥∥f −
k∑

j=1

αjfj

∥∥∥∥∥
2

X

= ‖f‖2X −
k∑

j=1

αj(f, fj)X −
k∑

j=1

αj(fj, f)X +
k∑

j,m=1

αjαm(fj, fm)X

= ‖f‖2X −
k∑

j=1

αjαj −
k∑

j=1

αjαj +
k∑

j=1

αjαj

= ‖f‖2X −
k∑

j=1

|αl|2

なので
k∑

j=1

|(f, fj)X |2 ≤ ‖f‖2X .

k → ∞ として所望の不等式を得る*1.

X をヒルベルト空間とする. A = {fk} ⊂ X を正規直交系とする.

L0 =

{
k∑

j=1

αjfj (k ≥ 1); αj ∈ K (1 ≤ j ≤ k)

}

と定義する. このとき, L = L0 とおく. すなわち L は正規直交系A により生成される
閉部分空間である.

任意の f ∈ L0 は
f =

k∑
j=1

(f, fj)Xfj

の形でかける.� �
注意. 射影定理によってX は L = L0 によって

X = L⊕ L⊥

と表される. すなわち f ∈ X は

f = g + h (g ∈ L, h ∈ L⊥)

とかくことができる.� �
*1微積分学で学習する上に有界な単調増加列は収束するという事実を用いた.
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正射影作用素

ヒルベルト空間X とする. 閉部分空間 L ⊂ X とする. X = L ⊕ L⊥ における写像
PL : X → L を

PLf = g (f = g + h, g ∈ L, h ∈ L⊥)

と定める. PL を正射影作用素という.

� �
定理. ヒルベルト空間X とする. L = L0 とする. このとき任意の f ∈ X に対して

PLf =
∞∑
k=1

(f, fk)Xfk.

さらに任意の f, f ′ ∈ X に対して

(PLf, PLf
′)X =

∞∑
k=1

(f, fk)X(f ′, fk)X .

� �
証明. αj = (f, fj) とおく. k > l とする∥∥∥∥∥

k∑
j=1

αjfj −
l∑

j=1

αjfj

∥∥∥∥∥
2

X

=

∥∥∥∥∥
k∑

j=l+1

αjfj

∥∥∥∥∥
2

X

=
k∑

j=l+1

k∑
m=l+1

(αjfj, αmfm)X

=
k∑

j=l+1

k∑
m=l+1

αjαm (fj, fm)X

=
k∑

j=l+1

|αj|2.

ベッセルの不等式より右辺は収束するので k > l → ∞ とすると 0 に収束する. よって{∑k
j=1 αjfj

}
は閉集合 L における収束列である. その極限点を g =

∑∞
j=1 αjfj ∈ L と
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おく*2. このとき

(f − g, fm)X = lim
k→∞

(
f −

k∑
j=1

αjfj, fm

)

= lim
k→∞

(f, fm)X −

(
k∑

j=1

αjfj, fm

)
X


= lim

k→∞

[
(f, fm)X −

k∑
j=1

αj (fj, fm)X

]
= lim

k→∞
[(f, fm)X − αm]

= 0.

ここで 4番目の等式ではクロネッカーのデルタ

δj,m =

{
1 (j = m)

0 (j 6= m)

に対して (fj, fm)X = δj,m であることを用いた. 以上のことから (f − g) ⊥ L0. 任意の
ξ ∈ L に対して収束する点列 {ξq} ⊂ L0 が存在するので

(f − g, ξ)X = lim
q→∞

(f − g, ξq)X

= 0.

ゆえに f − g ∈ L⊥ である*3. したがって

PLf = g =
∞∑
j=1

αjfj.

最後の式を証明するためにαj = (f, fj)X , α
′
j = (f ′, fj)X とおくとシュワルツの不等式と

ベッセルの不等式より
k∑

j=1

|αjα′
j| ≤

(
k∑

j=1

|αj|2
)1/2( k∑

j=1

|α′
j|2
)1/2

≤ ‖f‖X‖f ′‖X

*2 lim
k→∞

∥∥∥∥∥∥
k∑

j=1

αjfj − g

∥∥∥∥∥∥
X

= 0という意味.

*3内積の連続性を用いた. シュワルツの不等式からすぐに得られる.
実際, |(f − g, ξ)X − (f − g, ξq)X | = |(f − g, ξ − ξq)X | ≤ ‖f − g‖X‖ξ − ξq‖X → 0, q → ∞.
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を得る. これで
{∑k

j=1 αjα′
j

}
が絶対収束することがいえる. したがって

(PLf, PLf
′)X = lim

k→∞

(
k∑

j=1

αjfj,

k∑
m=1

α′
mfm

)
X

= lim
k→∞

k∑
j=1

k∑
m=1

αjα′
m (fj, fm)X

= lim
k→∞

k∑
j=1

αjα′
j

=
∞∑
j=1

αjα′
j.
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完全正規直交系

ヒルベルト空間X とする. 正規直交系 {fk} ⊂ X が完全正規直交系であるとは, 任意
の f ∈ X に対して

f =
∞∑
k=1

(f, fk)Xfk

が成り立つことをいう.

次の定理を示すことがこの章の目的である.� �
定理 (完全正規直交系の特徴づけ). ヒルベルト空間X とする. L を前章で導入した
ものとし, 正規直交系 {fk} ⊂ X とする. 次の条件 (i) ∼ (v)は同値である.

(i) {fk} は完全正規直交系である.

(ii) L = X.

(iii) 任意の f ∈ X に対して ‖f‖2X =
∞∑
k=1

|(f, fk)X |2 .

(iv) 任意の f, f ′ に対して (f, f ′)X =
∞∑
k=1

(f, fk)X(f ′, fk)X .

(v) 任意の k ∈ N に対して (f, fk)X = 0 ならば f = 0.

上の条件 (i) ∼ (v) のどれかを満たすとき {fk} はX の完全正規直交系であるとい
うa.

aすなわち (i) ∼ (v)のどれかで完全正規直交系であることを定義していて, どの定義を採用して
も同値ということである.� �
証明.

(ii) =⇒ (i) :

(ii) を仮定すると PLf = f なので前章の定理より (i) が成り立つ.

(i) =⇒ (iv) :
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(i) を仮定すると f = PLf となるので f ∈ L を得る. 先程の命題より (iv) が成り立つ.

(iv) =⇒ (iii) :

これは明らかである.

(iii) =⇒ (v) :

これは明らかである.

(v) =⇒ (ii) :

(v) を仮定する. もし f ∈ L⊥ ならば (f, fk)X = 0 (∀k ≥ 1). よって f = 0. したがって
L⊥ = {0} となる. 射影定理よりX = L となる. よって (ii) が成り立つ.

完全正規直交系とフーリエ級数
L2 = L2(−π, π) とかく. f ∈ L2 のフーリエ変換 f̂ を

f̂(k) = (2π)−1/2

∫ π

−π

e−ikxf(x)dx (k ∈ Z)

と定義する.� �
定理. A = {(2π)−1/2eikx}k∈Z は L2(−π, π) における完全正規直交系である.� �� �
補題 (C∞

0 (−π, π)の L2における稠密性). 次が成り立つ.

C∞
0 (−π, π)

L2

= L2.

ここで, X ⊂ L2 に対してX
L2

は L2-ノルムにより定まる位相における閉包を意味
する.� �
証明. この補題は重要であるが, ここでは証明しない. 適当な文献を参照のこと.

定理の証明
証明. 正規直交性は既に示したので, ここでは完全性を証明すればよい.

Step 1 v ∈ C∞
0 (−π, π) とする. v(−π) = v(π) = 0 である. v を周期 2π の周期関数と

してR 全体に拡張する. 基本的なフーリエ級数の収束定理により各点収束の意味で

v(x) = lim
N→∞

SN [v](x) (∀x ∈ (−π, π))

が成り立つ. ここで, フーリエ級数の部分和

SN [v] = (2π)−1/2

N∑
k=−N

v̂(k)eikx (N ≥ 1)
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である. ベッセルの不等式の証明と同じ様な計算により

‖v − SN [v]‖2L2 = ‖v‖L2 −
N∑

k=−N

|v̂(k)|2

を得る.

|v − SN [v]|2 ≤ |v|2 + 2|v|SN [v] + SN [v]
2,

|SN [v]| ≤ (2π)−1‖v‖L1(−π,π)(2N + 1) ∈ L2(−π, π) (∀N ≥ 1),

SN [v](x) −−−→
N→∞

v(x) (∀x ∈ (−π, π))

なのでルベーグ収束定理により limN→∞ ‖v − SN [v]‖L2 = 0. したがって

‖v‖2L2 = ‖v̂‖2l2(Z) .

Step 2 f ∈ L2 とする. 稠密性により {vj} ⊂ C∞
0 (−π, π) が存在し vj −−−→

j→∞
f in L2 が

成り立つ. これと三角不等式により*1 ‖vj‖L2 −−−→
j→∞

‖f‖L2 を得る. またベッセルの不等
式により ∥∥∥f̂ − v̂j

∥∥∥
l2(Z)

=
∥∥∥f̂ − vj

∥∥∥
l2(Z)

≤ ‖f − vj‖L2 −−−→
j→∞

0

となるので ‖v̂j‖L2 −−−→
j→∞

∥∥∥f̂∥∥∥
L2

. 以上により

‖vj‖2L2 = ‖v̂j‖2l2(Z)
↓ ↓ (j → ∞)

‖f‖2L2

∥∥∥f̂∥∥∥2
l2(Z)

となるので極限点の一意性により

‖f‖2L2 =
∥∥∥f̂∥∥∥2

l2(Z)
.

以上と定理 11 の (iii) によりA =
{
(2π)−1/2eikx

}
k∈Z は完全正規直交系である.

上の定理により L2 におけるフーリエ級数の展開に関する定理を得る.� �
定理. 任意の f ∈ L2(−π, π) に対して

lim
N,M→∞

∥∥∥∥∥f − (2π)−1/2

N∑
k=−M

f̂(k)eikx

∥∥∥∥∥
L2

= 0

が成り立つ.� �
*1
∣∣‖a‖X − ‖b‖X

∣∣ ≤ ‖a− b‖X .
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� �
注意. 上の極限の意味で f ∈ L2(−π, π) は

f = (2π)−1/2

∞∑
k=−∞

f̂(k)eikx

と展開される.� �� �
注意. Z の元をN の元と対応させて数えるのと同じ様にして {eikx}∞k=−∞ を {ek}∞k=1

の形でかける. この事実は上の議論でしばしば用いている.� �
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線形作用素

X,Y を線形空間とする（ここでは, X,Y は必ずしもノルム空間やバナッハ空間であ
るということは仮定しない）. 部分空間D ⊂ X とする. T : D → Y が線形であるとは

T (αf + βg) = αT (f) + βT (g) (f, g ∈ D, α, β ∈ K)

が成り立つことをいう. 線形な写像を線形作用素という.

T の定義域D をD(T ) とかく. また

R(T ) = {T (f); f ∈ D(T )}

を T の値域という.

� �
定理. X = D = C([0, 1]), Y = C([0, 1]) とする. f ∈ D に対して

T (f)(x) =

∫ x

0

f(t)dt (x ∈ [0, 1])

と定めると T は線形作用素である.� �
証明. 第 1段
まず前提として T : C([0, 1]) → C([0, 1]) すなわち T がC([0, 1]) のなかの写像である
ことを示しておく必要がある. f ∈ C([0, 1]) に対して T (f) は微分可能なので連続であ
る*1. したがって T (f) ∈ C([0, 1]) である.

*1微分積分学の基本定理より (T (f))′(x) = f(x)である.



60 第 12章 線形作用素 I

第 2段
次に線形性を示そう.

T (αf + βg)(x) =

∫ x

0

(αf(t) + βg(t))dt

= α

∫ x

0

f(t)dt+ β

∫ x

0

g(t)dt

= αT (f)(x) + βT (g)(x)

なので T (αf + βg) = αT (f) + βT (g) が成り立っている.� �
定理. X = C([0, 1]) とする. 定義域をD = C1([0, 1]) として Y = C([0, 1]) とする.

このとき f ∈ D に対して

T (f)(x) = f ′(x) (x ∈ [0, 1])

と定めると T は線形作用素である.� �
証明. 第 1段
先ほどの例と同様に f ∈ C1([0, 1]) に対して T (f) = f ′ ∈ C([0, 1]) を確かめる必要が
あるのだが, これは f ∈ C1([0, 1]) ということの定義が f ′ が [0, 1] で連続であるというこ
となので明らかである.

第 2段
次に線形性であるが

T (αf + βg)(x) = (αf + βg)′(x)

= αf ′(x) + βg′(x)

= αT (f)(x) + βT (g)(x)

なので T (αf + βg) = αT (f) + βT (g) が成り立っている.

恒等作用素

線形空間X とする. I(f) = f なる作用素 I : X → X を恒等作用素という. 恒等作用
素は明らかに線形である.
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作用素の連続性・有界性
連続線形作用素

ノルム空間X,Y とする. D(T ) ⊂ X とする. 線形作用素 T : D(T ) → Y が連続であ
るとは

lim
k→∞

‖fk − f‖X = 0

ならば

lim
k→∞

‖T (fk)− T (f)‖Y = 0

が成り立つことをいう. 連続な線形作用素を連続線形作用素という. 連続線形作用素を
単に連続作用素と呼ぶことがある.

有界線形作用素

ノルム空間X,Y とする. D(T ) ⊂ X とする. 線形作用素 T : D(T ) → Y が有界であ
るとはM > 0 が存在し

‖T (f)‖Y ≤ M ‖f‖X (f ∈ D(T ))

が成り立つことをいう. 有界線形作用素を単に有界作用素と呼ぶことがある.

次の定理は重要である.� �
定理. ノルム空間X,Y とする. D(T ) ⊂ X とする. 線形作用素 T : D(T ) → Y が連
続作用素であることの必要十分条件は有界作用素であることである.� �
証明.

(十分性) 有界性を仮定すると

‖T (fk)− T (f)‖Y = ‖T (fk − f)‖Y ≤ M ‖fk − f‖X → 0 (k → ∞)

より連続性がいえる.

(必要性) 連続性を仮定する. 有界でないとすると任意のM > 0 に対して f ∈ D(T ) が
存在し

‖T (f)‖Y > M ‖f‖X
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が成り立つ. するとM = k に対して fk ∈ D(T ) が存在し上の不等式が成り立つ.

gk =
1√

k ‖fk‖X
fk

とおくと ‖gk‖X = 1/
√
k であり gk → 0 (k → ∞) in X.

‖T (gk)‖Y =
1√

k ‖fk‖X
‖T (fk)‖Y

>
1√

k‖fk‖X
· (k‖fk‖X)

=
√
k → ∞ (k → ∞)

これは連続であることに矛盾する.

D(T ) = X となる有界線形作用素の全体をL(X,Y ) とかく. またL(X) = L(X,X) と
かく.
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作用素の和とスカラー倍

X を線形空間とする. D ⊂ X で定義されたふたつの線形作用素 T, S について作用素
の和 T + S とスカラー倍 αT を

(i) (T + S)(f) = T (f) + S(f).

(ii) (αT )(f) = α(T (f)).

で定義する.

作用素ノルム

ノルム空間X,Y とする. 有界線形作用素 T : D(T ) ⊂ X → Y に対して

‖T‖B = sup
f ̸=0

‖T (f)‖Y
‖f‖X

と定義する. とくにD(T ) = X の場合のみ考える場合, すなわち T ∈ L(X,Y ) のみ考え
る場合は

‖T‖L(X,Y ) = sup
f ̸=0

‖T (f)‖Y
‖f‖X

とかく.

� �
注意. ‖ · ‖B はノルムとしての条件をみたす. したがって L(X,Y ) はノルム空間と
なる. また ‖ · ‖B を作用素ノルムという.� �
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� �
例 (積分作用素). I = [a, b] とする.

T (f) =

∫ b

a

f(x)dx (f ∈ C(I))

と定義すると T ∈ L(C(I),R) で ‖T‖L(C(I),R) = b − a となる. このことを確かめて
みよう. まず

|T (f)| ≤ (b− a)‖f‖C(I)

なので ‖T‖L(C(I),R) ≤ b− a. f ≡ 1 なる f ∈ C(I) に対して

b− a =
|T (f)|
‖f‖C(I)

≤ ‖T‖L(C(I),R).

� �� �
例 (ヒルベルト・シュミット型積分作用素). I = (0, 1) とする. k ∈ L2(I × I) とす
る. f ∈ L2(I) に対して

T (f)(t) =

∫
I

k(t, s)f(s)ds (t ∈ I)

と定義すると T ∈ L(L2) となる. このことを確かめてみよう. ヘルダーの不等式に
よりこの積分は意味を持つことが確かめられる.

|T (f)(t)| =
∣∣∣∣∫

I

k(t, s)f(s)ds

∣∣∣∣
≤
∫
I

|k(t, s)||f(s)|ds

≤ ‖k(t, ·)‖L2(I)‖f‖L2(I) < ∞.

この不等式の両辺を t に関して L2-ノルムをとり

‖T (f)(t)‖L2
t (I)

≤ ‖k‖L2(I×I)‖f‖L2(I)

を得る. したがって T : L2(I) → L2(I) である. また線形性は明らかであるa. 上の
評価式より有界であることがいえていて ‖T‖L(L2) ≤ ‖k‖L2(I×I) を得る.

a自分で確かめてみよう.� �
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� �
例 (フーリエ変換). T を次の様に定義する.

T (f)(x) = (2π)−n/2

∫
Rn

e−iξ·xf(x)dx (f ∈ L1(Rn)).

T ∈ L(L1, L∞) となる. このことを確かめてみよう. ヘルダーの不等式より次を
得る.

|T (f)(x)| =
∣∣∣∣(2π)−n/2

∫
Rn

e−iξ·xf(x)dx

∣∣∣∣
≤ (2π)−n/2

∫
Rn

|e−iξ·xf(x)|dx

= (2π)−n/2

∫
Rn

|f(x)|dx

= (2π)−n/2‖f‖L1 .

線形性は明らかであるa. 両辺の L∞-ノルムをとると

‖T (f)‖L∞ ≤ (2π)−n/2‖f‖L1 .

したがって T : L1 → L∞ である. 以上より ‖T‖L(L1,L∞) ≤ (2π)−n/2. T はフーリエ
変換と呼ばれる. ここでは詳しく扱わないが, 1 ≤ p ≤ 2 に対してフーリエ変換は
T : Lp → Lp′ の有界線形作用素として定義することができるb. ここで, p′ = p/(p−1).

a自分で確かめてみよう.
bもっと一般の緩増加超関数のクラス S ′(Rn)というものに対してフーリエ変換は定義される.� �� �

定理. ノルム空間X,Y とする. 有界線形作用素 T : D(T ) ⊂ X → Y とする. この
とき

‖T‖B = sup
∥f∥X=1

‖T (f)‖Y = sup
∥f∥X≤1

‖T (f)‖Y

が成り立つ.� �
証明.

‖T‖B = sup
f ̸=0

‖T (f)‖Y
‖f‖X

= sup
f ̸=0

∥∥∥∥T ( f

‖f‖X

)∥∥∥∥
Y

≤ sup
∥f∥X=1

‖T (f)‖Y

≤ sup
0<∥f∥X≤1

‖T (f)‖Y

≤ sup
0<∥f∥X≤1

‖T (f)‖Y
‖f‖X

≤ ‖T‖B
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により成り立つ*1.� �
例 (行列の作用素ノルム). X = R2 とする. 行列A =

(
a b

c d

)
(a, b, c, d ∈ R) とす

る. TA : X → X を

TA(x) = Ax (x ∈ X)

と定義すると TA ∈ L(X) となる. TA に対して

‖TA‖0 =
√
a2 + b2 + c2 + d2

と定義すると ‖ · ‖0 はノルムとなる. また TA に対して作用素ノルム ‖ · ‖L(X) と ‖ · ‖0
は同値なノルムとなる. これは直接, 確かめることも出来て

‖TA‖L(X) = sup
∥x∥X=1

√
(ax1 + bx2)2 + (cx1 + dx2)2

≤ sup
∥x∥X=1

(√
a2 + b2 +

√
c2 + d2

)
(コーシー・シュワルツの不等式)

≤ 2‖TA‖0

= 2

√√√√∥∥∥∥∥TA

((
1

0

))∥∥∥∥∥
2

X

+

∥∥∥∥∥TA

((
0

1

))∥∥∥∥∥
2

X

≤ 2

(∥∥∥∥∥TA

((
1

0

))∥∥∥∥∥
X

+

∥∥∥∥∥TA

((
0

1

))∥∥∥∥∥
X

)
≤ 4‖TA‖L(X).� �

*1ここでT 6= 0の場合が本質的なので sup
0<∥u∥X≤1

‖T (u)‖Y ≤ sup
∥u∥X≤1

‖T (u)‖Y と任意の ‖u‖X ≤ 1に対し

て ‖T (u)‖Y ≤ max

(
‖T (0)‖Y , sup

0<∥u∥X≤1

‖T (u)‖Y

)
≤ sup

0<∥u∥X≤1

‖T (u)‖Y . 以上により sup
∥u∥X≤1

‖T (u)‖ =

sup
0<∥u∥X≤1

‖T (u)‖Y .
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� �
定理 (完備性). X をノルム空間とする. Y がバナッハ空間であれば L(X,Y ) は完
備, すなわちバナッハ空間となる.� �
証明. {Tk} ⊂ L(X,Y ) をコーシー列としよう. すなわち, 任意の ε > 0 に対してN1 =

N1(ε) ≥ 1 が存在し k, l ≥ N1 ならば

‖Tk − Tl‖L(X,Y ) <
ε

4
.

任意の f ∈ X \ {0} とする. k, l ≥ N1 ならば∥∥∥∥Tk

(
f

‖f‖X

)
− Tl

(
f

‖f‖X

)∥∥∥∥
Y

≤ ‖Tk − Tl‖L(X,Y ) <
ε

4
(0.1)

なので{Tk (f/‖f‖X)} ⊂ Y もコーシー列である. Y はバナッハ空間だから{Tk (f/‖f‖X)} ⊂
Y は収束する. 線形性により

Tk(f) = ‖f‖XTk

(
f

‖f‖X

)
なので {Tk(f)} ⊂ Y も収束する*1. 以上により, 任意の f ∈ X に対して

T (f) = lim
k→∞

Tk(f)

とおくことで T : X → Y が定義される. またN∗ = N∗(f) ≥ 1 が存在し k ≥ N∗ ならば

‖Tk(f)− T (f)‖Y <
ε

4

である. 次のことが示せれば良い.

• T ∈ L(X,Y ) である

• T が {Tk} ⊂ L(X,Y ) の収束先である

f ∈ X とする.

‖Tk(f)‖Y ≤ ‖Tk‖L(X,Y )‖f‖X

*1f = 0のときも Tk(0) = 0なので収束する.
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なので

‖T (f)‖Y = lim
k→∞

‖Tk(f)‖Y ≤
(
lim
k→∞

‖Tk‖L(X,Y )

)
‖f‖X .

したがって T ∈ L(X,Y ) *2. 任意の g ∈ X で ‖g‖X = 1 なるものとする. g = g/‖g‖X
なので (0.1) は g に対しても成り立つ. N = N(g) = max(N1, N

∗(g)) とおく. このとき
k ≥ N1 ならば

‖Tk(g)− T (g)‖Y = ‖Tk(g)− TN(g) + TN(g)− T (g)‖Y <
ε

2
(0.2)

を得る. k ≥ N1 に対して*3

‖Tk − T‖L(X,Y ) = sup
∥g∥X=1

‖Tk(g)− T (g)‖Y ≤ ε

2
< ε (0.3)

がいえる. これは L(X,Y ) における収束の意味で lim
k→∞

Tk = T を意味する. 以上で完備
性, すなわちL(X,Y ) がバナッハ空間であることが示された.� �
問題. 上の証明における T̃ の線形性を証明せよ.� �
逆作用素

X,Y を線形空間とする. D(T ) ⊂ X とする. T : D(T ) → Y が単射のとき T の逆写像
T−1 を定義できる. D(T−1) = R(T ) となる*4. T−1 は次の関係式をみたすものである.

T−1 (T (f)) = f (f ∈ D(T )),

T
(
T−1(g)

)
= g (g ∈ R(T )).

� �
定理 (逆作用素の線形性). 線形空間X,Y とする. 線形作用素 T : D(T ) → Y は単
射であるとする. このとき, 逆作用素 T−1 が定義できる. T−1 は線形作用素となる.� �
*2ここで

|‖Tk(f)‖Y − ‖T (f)‖Y | ≤ ‖Tk(f)− T (f)‖Y → 0 (k → ∞)

であることより lim
k→∞

‖Tk(f)‖Y = ‖T (f)‖Y である. また∣∣‖Tk‖L(X,Y ) − ‖Tl‖L(X,Y )

∣∣ ≤ ‖Tk − Tl‖L(X,Y ) → 0 (k, l → ∞)

より {‖Tk‖L(X,Y )} が実数におけるコーシー列であることがいえる. したがってこの文脈で登場した極限
は極限値の存在が保証されている.

*3N1 は f に依存していない.
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証明. f, g ∈ R(T ) であれば α, β ∈ K に対して αf + βg ∈ R(T ) となる*5. このとき T

の線形性により
T
(
T−1(αf + βg)

)
= αf + βg

= αT (T−1(f)) + βT (T−1(g))

= T
(
αT−1(f) + βT−1(g)

)
.

T は単射なので
T−1(αf + βg) = αT−1(f) + βT−1(g).

作用素の冪乗
T ∈ L(X) に対して T k (k ≥ 1) を

T k(f) = T
(
T k−1(f)

)
(f ∈ X),

T 0(f) = I(f) (f ∈ X)

と定義する.

ノイマン級数と呼ばれる定理を紹介する. 等比級数の和の公式
∞∑
k=0

rk =
1

1− r
(0 < |r| < 1).

との類似性に注意しよう.� �
定理 (ノイマン級数). T ∈ L(X) とする. ‖T‖L(X) < 1 ならば, 次のことが成り立つ.

(i) R(I − T ) = X.

(ii) 逆作用素 (I − T )−1 ∈ L(X) が存在し

(I − T )−1 = I + T + T 2 + · · ·+ T j + · · · =
∞∑
k=0

T k.

また次が成り立つ.

‖(I − T )−1‖L(X) ≤
1

1− ‖T‖L(X)

.

� �
*5u, v ∈ D(T )が存在して f = T (u), g = T (v)とかける. T の線形性により αu + βv ∈ D(T )であり

T (αu+ βv) = αT (u) + βT (v) = αf + βg ∈ R(T ).



70 第 14章 線形作用素 III

証明. ‖T‖L(X) < 1 なので∑∞
k=0 ‖T‖kL(X) < ∞.∥∥∥∥∥

k∑
j=0

T j −
l∑

j=0

T j

∥∥∥∥∥
L(X)

=

∥∥∥∥∥
k∑

j=l+1

T j

∥∥∥∥∥
L(X)

≤
k∑

j=l+1

‖T j‖L(X)

≤
k∑

j=l+1

‖T‖jL(X)

=
k∑

j=0

‖T‖jL(X) −
l∑

j=0

‖T‖jL(X) → 0 (k > l → ∞)

を得る. ここで‖T (f)‖X ≤ ‖T‖L(X)‖f‖X を繰り返し用いた. これより点列
{∑k

j=0 T
j
}∞

k=0
⊂

L(X) はコーシー列. L(X) は完備なので S ∈ L(X) が存在し

lim
k→∞

k∑
j=0

T j = S.

TS = ST =
∞∑
j=0

T j+1 =
∞∑
j=0

T j − I = S − I.

したがって

I = (I − T )S = S(I − T )

を得る. これは

S =
∞∑
j=0

T j = (I − T )−1

を意味する. また
∥∥(I − T )−1

∥∥
L(X)

=

∥∥∥∥∥
∞∑
j=0

T j

∥∥∥∥∥
L(X)

≤
∞∑
j=0

∥∥T j
∥∥
L(X)

≤
∞∑
j=0

‖T‖jL(X)

=
1

1− ‖T‖L(X)

.
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� �
例. X = R2 とする. 行列

A =

(
1/2 0

0 1/2

)
に対して TA : X → X を

TAx = Ax (x ∈ X)

と定める. このとき

‖TA‖L(X) = sup
∥x∥X=1

√
(x1/2)2 + (x2/2)2 = 1/2

である. よって

(I − TA)
−1 =

∞∑
k=0

T k =
∞∑
k=0

(
(1/2)k 0

0 (1/2)k

)
=

(
2 0

0 2

)
.

この計算は (E2 − A)−1 = A−1 であることからも明らかである.� �� �
例. I = [0, 1] に対してX = C(I) とする. T : X → X を f ∈ X に対して

(Tf)(x) =
1

2

∫ x

0

f(t)dt (x ∈ I)

と定める. このとき

‖T‖L(X) = sup
∥f∥X=1

max
x∈I

∣∣∣∣12
∫ x

0

f(t)dt

∣∣∣∣
≤ 1

2
sup

∥f∥X=1

‖f‖X

=
1

2

である. よって
(I − T )−1 =

∞∑
k=0

T k

を定義できる. ここで

(T kf)(x) =

(
1

2

)k ∫ x

0

∫ tk−1

0

· · ·
∫ t3

0

(∫ t2

0

f(t1)dt1

)
dt2 · · · dtk−2dtk−1,

T 0f = f

である.� �





73

参考文献

[1] 黒田 成俊
関数解析
共立出版

[2] 藤田 宏, 黒田 成俊, 伊藤 清三
関数解析
岩波書店

[3] 増田 久弥
関数解析
裳華房

[4] 宮寺 功
関数解析
理工学社

[5] ハイム・ブレジス, 藤田 宏 監訳, 小西 芳雄 訳
関数解析
産業図書

[6] Haim Brezis

Functional Analysis, Sobolev Spaces and Partial Differential Equations

Springer
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