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第1章 ノルム空間

線形空間
以下の文脈においてはK = R or C とする.

線形空間� �
集合X がK 上の線形空間aであるとは, 任意の f, g ∈ X, α ∈ K に対して和

f + g ∈ X

とスカラー倍
αf ∈ X

が一意に定まり次の条件 (i) ∼ (viii) をみたすことをいう.

(i) f + g = g + f (f, g ∈ X).

(ii) (f + g) + h = f + (g + h) (f, g, h ∈ X).

(iii) 零元 0 ∈ X が存在して f + 0 = f (f ∈ X).

(iv) f ∈ X に対して逆元−f ∈ X が存在して f + (−f) = 0.

(v) 1f = f.

(vi) (αβ)f = α(βf) (α, β ∈ K).

(vii) α(f + g) = αf + αg (f, g ∈ X).

(viii) (α + β)f = αf + βf (α, β ∈ K, f, g ∈ X).

aベクトル空間ともいう. 英語の文献でも Linear Space と Vector Spaceふたつの呼び方がある.� �
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� �
注意 1. 上の定義で零元は存在すれば一意である. 実際に 0 の他に 0′ も零元だとす
れば

0 = 0 + 0′ = 0′ + 0 = 0′.

同様に上の定義において f ∈ X の逆元は存在すれば一意である. 実際に f の逆元
−f の他に逆元 g が存在するとすれば

−f = −f + 0 = −f + (f + g) = (−f + f) + g = 0 + g = g.

線形空間を定義するときに零元, 逆元が存在するという文言を一意的に存在すると
いう意味の文言に置き換えている文献もある.� �� �
例 1. n 次元ユークリッド空間Rn はK = R として, 通常の和 x + y とスカラー倍
αx に関して線形空間である. これはほとんど明らかなので証明を紹介しないことに
する.� �
線形空間の次元� �
X のベクトル u1, u2, . . . , uk が線形独立であるとは

k∑
j=1

αjuj = 0 (αj ∈ C) =⇒ αj = 0 (1 ≤ ∀j ≤ k)

が成り立つことをいう. u1, u2, . . . , uk が線形独立でないとき線形従属であるという.

X の中に d 個の線形独立なベクトルが存在し任意の (d+ 1) 個のベクトルが線形従
属であるときX は d 次元であるといいX の次元を

dimX = d

とかく. 任意の d に対して d 個の線形独立なベクトルが存在するときX は無限次元
であるといい

dimX = ∞

とかく.� �� �
通常の線形代数では, 次元が関係する議論においては有限次元の線形空間を中心に
扱う. 関数解析では本質的に無限次元の線形空間を扱う.� �
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� �
例 2. 閉区間 I = [a, b] とする.

C(I) = {f : I → K; f は I 上連続 }

において和と積をそれぞれ

(f + g)(x) = f(x) + g(x) (x ∈ I),

(αf)(x) = αf(x) (x ∈ I, α ∈ K)

と定める. このときC(I) は線形空間になる. また dimC(I) = ∞ である.� �
このことを確認してみよう. よく知られているように連続関数の和 f + g と定数倍 αf

はともに連続関数である.

線形空間であること
x ∈ I とする. このとき f(x) と g(x) はK の元なので

(f + g)(x) = f(x) + g(x) = g(x) + f(x) = (g + f)(x).

すなわち
f + g = g + f

がいえたことになる. また
((f + g) + h)(x) = (f + g)(x) + h(x)

= (f(x) + g(x)) + h(x)

= f(x) + (g(x) + h(x))

= f(x) + (g + h)(x)

= (f + (g + h))(x) (x ∈ I).

すなわち
(f + g) + h = f + (g + h).

零元は
0(x) = 0 (x ∈ I)

なる関数を零元とすれば良い. −f を
(−f)(x) = −(f(x)) (x ∈ I)

と定義すると
(f + (−f))(x) = f(x) + (−f)(x)

= f(x) + (−(f(x)))

= f(x)− (f(x))

= 0 (x ∈ I)
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となっているので−f は逆元である.

(1f)(x) = 1 · f(x) = f(x) (x ∈ I)

なので
1f = f

である. βf = g とおくと次の様になる

((αβ)f) (x) = (αβ)f(x)

= α(βf(x))

= αg(x)

= (αg)(x)

= (α(βf))(x) (x ∈ I)

なので
(αβ)f = α(βf).

残りも同様に示せる*1 .

dimC(I) = ∞であること

pd(x) = xd, d = 0, 1, 2, . . .

とする. 任意の d ∈ N ∪ {0} に対して

p0, p1, . . . , pd

が線形独立であることを確かめよう. αj ∈ K に対して
d∑

j=0

αjpj = 0

とすれば
d∑

j=0

αjx
j = 0 (x ∈ [a, b])

となる. 両辺を x で d 回微分すると

αd = 0

を得る. 次に
d−1∑
j=0

αjx
j = 0

*1余裕があれば自分で確認してみよう.
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の両辺を x で (d− 1) 回微分すると αd−1 = 0 を得る. この議論を繰り返すと

α0 = α1 = · · · = αd−1 = αd = 0

を得る. 以上により dimC(I) = ∞.� �
注意 2. 線形空間であることの証明が当たり前の様に思えてその意義が良くわから
ないと思う場合は次の様なことに注意しよう. C(I) に和を

(f + g)(x) = f(x) + 2g(x), x ∈ I

と定義すると線形空間とはならない. 実際, こう定義すると適当な f, g ∈ C(I) に対
して

(f + g)(x) = f(x) + 2g(x) 6= g(x) + 2f(x) = (g + f)(x)

となるからである.� �
部分空間� �
線形空間 X とする. 部分集合 X0 ⊂ X とする. X0 が X の部分空間であるとは
f, g ∈ X0, α ∈ K に対して {

f + g ∈ X0

αf ∈ X0

が成り立つことをいう. 線形部分空間ともいう.� �
ノルム空間
ノルム空間� �
K上の線形空間X とする. 次の条件をみたす写像 ‖ · ‖X : X → R をノルムという.

(i) ‖f‖X ≥ 0. ‖f‖X = 0 ⇐⇒ f = 0.

(ii) ‖αf‖X = |α| ‖f‖X (α ∈ K, f ∈ X).

(iii) ‖f + g‖X ≤ ‖f‖X + ‖g‖X (f, g ∈ X).

ノルムの定義された線形空間をノルム空間という. ノルム空間X を紹介するときに
そのノルム ‖ · ‖X とあわせてノルム空間 (X, ‖ · ‖X) と紹介することがある.� �� �
注意 3. 絶対値はノルムの条件をみたす. 絶対値は数の大きさを測るが, ノルム ‖ · ‖
は線形空間の元（ベクトル）の大きさを測るものである.� �
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点列� �
X をノルム空間とする. 番号 k ≥ 1 に対して fk ∈ X が唯一に決まるときこの対応
k 7→ fk により定まる {fk} ⊂ X を点列という.� �� �
点列 {fk} ⊂ X が f ∈ X に収束（ノルム収束）するとは, 任意の ε > 0 に対して
N = N(ε) ≥ 1 が存在し k ≥ N ならば

‖fk − f‖X < ε

が成り立つことをいう. このとき f ∈ X を極限点という. 収束することを

lim
k→∞

fk = f

とかく. Xにおける収束という意味を強調するために lim
k→∞

fk = f in X とかくこと
がある.� �� �
問題 1. lim

k→∞
‖fk − f‖X = 0 が成り立つとき lim

k→∞
‖fk‖X = ‖f‖X が成り立つことを

証明せよ.� �
ノルムによる距離の誘導� �
ノルム空間 (X, ‖ · ‖X) において

d(f, g) = ‖f − g‖X

と定義すると d はX における距離となる. これにより距離空間 (X, d) が定まる.� �
閉包� �
距離空間 (X, d) とする. A ⊂ X とする.

A =
{
a ∈ X; 任意の ε > 0 に対して B(a, ε) ∩ A 6= ∅

}
をA の閉包というa. ここで, 開球B(a, ε) = {f ∈ X; d(f, a) < ε}.

a詳しいことは位相空間論について書かれた文献を参照のこと.� �� �
命題 1. ノルム空間X の部分空間X0 ⊂ X の閉包X0 は部分空間である.� �
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証明. f, g ∈ X0 とすると ‖f − fk‖X −−−→
k→∞

0, ‖g− gk‖X −−−→
k→∞

0 となる点列 {fk}, {gk} ⊂
X0 が存在する. X0 は部分空間だから fk + gk ∈ X0 である. また ‖fk + gk − (f + g)‖X ≤
‖fk − f‖X + ‖gk − g‖X −−−→

k→∞
0 である. 一般に閉集合の点列の極限点はその閉集合の元

なので f + g ∈ X0 がいえる. 同様に αf ∈ X0, α ∈ K. したがって部分空間である.� �
定理 1 (コーシー・シュワルツの不等式). x, y ∈ Rn に対して

|x · y| ≤

(
n∑

j=1

x2
j

)1/2( n∑
j=1

y2j

)1/2

が成り立つ. ここでユークリッド内積 x · y =
∑n

j=1 xjyj.� �
証明. y = 0 のときは成り立つので y 6= 0 とする.

α = − x · y
n∑

j=1

y2j

とおく. このとき

0 ≤ (x+ αy) · (x+ αy) =
2∑

j=1

x2
j −

|x · y|2
n∑

j=1

y2j

を得る. この式の右辺の 2番目の項を移項して求める不等式を得る.
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� �
例 3. n 次元ユークリッド空間Rn は

‖x‖Rn =

(
n∑

j=1

x2
j

)1/2

(x = (x1, x2, · · · , xn) ∈ Rn)

をノルムとするノルム空間となる. ここで

‖x‖2Rn = x · x

であることに注意. 実際に (Rn, ‖ · ‖Rn) がノルム空間であることを確かめてみよう.

まず (i) は明らかである. (ii) に関しては

‖αx‖Rn =

(
n∑

j=1

(αxj)
2

)1/2

=

(
α2

n∑
j=1

x2
j

)1/2

=
√
α2

(
n∑

j=1

x2
j

)1/2

= |α|

(
n∑

j=1

x2
j

)1/2

= |α|‖x‖Rn .

(iii) はコーシー・シュワルツの不等式を用いる.

‖x+ y‖2Rn = (x+ y) · (x+ y)

= ‖x‖2Rn + 2x · y + ‖y‖2Rn

≤ ‖x‖2Rn + 2‖x‖Rn‖y‖Rn + ‖y‖2Rn

= (‖x‖Rn + ‖y‖Rn)2

なので (iii) を確かめることができた.� �� �
例 4. n 次元複素空間Cn は

‖z‖Cn =
√

‖x‖2Rn + ‖y‖2Rn (z = x+ iy ∈ Cn)

をノルムとするノルム空間となる. ここで

‖x‖2Rn = x · x

であることに注意.� �
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� �
例 5. 閉区間 I = [a, b] とする. C(I) は

‖f‖C(I) = max
x∈I

|f(x)|

をノルムとするノルム空間となるa.

a絶対値 | · |の性質を用いれば直ちにいえることである. 自分で確かめてみよう.� �� �
例 6. I = [0, 2π] とする. fk(x) =

1

k
sin(kx) (x ∈ I) で定まる {fk} は C(I) の点列

となる. このとき

‖fk‖C(I) =
1

k
max
x∈I

| sin(kx)| = 1

k

となるので

lim
k→∞

‖fk − 0‖C(I) = lim
k→∞

1

k
= 0

なので lim
k→∞

fk = 0 である.� �
線形空間に定義されるノルムはひとつとは限らない.

ノルムの同値性� �
線形空間X とする. X において定義されたふたつのノルム ‖ · ‖X,1, ‖ · ‖X,2 が同値
であるとは

c‖u‖X,2 ≤ ‖u‖X,1 ≤ C‖u‖X,2

が成り立つことをいう.� �� �
例 7. X = R2 において

‖x‖1 =
√

x2
1 + x2

2, ‖x‖2 =
2∑

j=1

|xj|

と
‖x‖3 = max

j=1,2
|xj|

の同値なノルムがある.� �� �
定理 2. K 上の線形空間X とする. dimX = d < ∞ とする. このときX の任意の
ふたつのノルム ‖ · ‖X,1 と ‖ · ‖X,2 は同値である.� �
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証明. 任意の f ∈ X は基底 {e1, e2, . . . , ed} を用いて

f =
d∑

j=1

cjej

と一意的に表される.

‖f‖0 = max
1≤j≤d

|cj|

はX におけるノルムとなる. ‖ ·‖X をXにおける任意のノルムとする. 写像φ : Kd → R
を

φ(c) =

∥∥∥∥∥
d∑

j=1

cjej

∥∥∥∥∥
X

(c = (c1, c2, . . . , cd))

と定義する. φ は明らかに連続である. S を

S =

{
c = (c1, c2, . . . , cd); max

1≤j≤d
|cj| = 1

}
と定めると S はKn のコンパクト集合である. したがってφ は S において最大値M と
最小値mをとる. またm > 0 である. なぜならm = 0 のとき c = 0 であるが 0 6∈ S だ
からである. したがって

0 < m ≤

∥∥∥∥∥
d∑

j=1

cjej

∥∥∥∥∥
X

≤ M (c = (c1, c2, . . . , cd) ∈ S).

f 6= 0 とする.

g =
f

‖f‖0
とすれば ‖g‖0 = 1 なので

g =
d∑

j=1

c′jej

の係数は S に属する. したがって

m ≤ ‖g‖X =

∥∥∥∥∥
d∑

j=1

c′jej

∥∥∥∥∥
X

≤ M.

一方で
‖g‖X =

‖f‖X
‖f‖0

なので
m‖f‖0 ≤ ‖f‖X ≤ M‖f‖0.

f = 0 の場合は両辺 0 なので上の不等式は成り立つ.
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第2章 バナッハ空間

コーシー列� �
点列 {fk} ⊂ X がコーシー列であるとは, 任意の ε > 0 に対してN = N(ε) ≥ 1 が存
在し k, l ≥ N ならば

‖fk − fl‖X < ε

が成り立つことをいう.� �
バナッハ空間� �
完備なノルム空間X をバナッハ空間という. すなわちノルム空間X の任意のコー
シー列がX に極限点をもつときX をバナッハ空間という.� �� �
例 8. 微分積分学において R の完備性は知られている. 同様に Rn と Cn もそれぞ
れのノルムにおける収束の意味で完備である. すなわちバナッハ空間である.� �� �
定理 3. I ⊂ R とする.

B(I) =

{
f : I → C; ‖f‖B(I) = sup

x∈I
|f(x)| < ∞

}
はバナッハ空間である.� �
証明. B(I)は線形空間である. また‖·‖B(I) がノルムとなることも明らかである. {fk} ⊂
B(I) をコーシー列とする. すなわち任意の ε > 0 に対して N = N(ε) ≥ 1 が存在し
k, l ≥ N ならば

‖fk − fl‖B(I) <
ε

4

が成り立つ. とくに, 任意に固定した x ∈ I に対して k, l ≥ N ならば

|fk(x)− fl(x)| <
ε

4
.

したがって {fk(x)} ⊂ C はコーシー列である. C の完備性により f(x) ∈ C が存在し,

fk(x) −−−→
k→∞

f(x). すなわちN1 = N1(ε, x) が存在し k ≥ N1 ならば |fk(x)− f(x)| < ε/4.
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また |f(x)| ≤ ε + |fk(x)| ≤ ε/4 + ‖f‖B(I) である. x の任意性により f ∈ B(I). N ∗ =

max(N,N1) とすると k ≥ N ならば任意の x ∈ I に対して

|fk(x)− f(x)| ≤ |fk(x)− fN∗(x) + fN∗(x)− f(x)|

≤ ε

2
.

すなわち k ≥ N に対して

sup
x∈I

|fk(x)− f(x)| ≤ ε

2
< ε.

� �
定理 4. 閉区間 I = [a, b] とする. C(I) はノルム

‖f‖C(I) = max
x∈I

|f(x)|

を備えたバナッハ空間である.� �
証明. {fk} ⊂ C(I) をコーシー列とする. すなわち任意の ε > 0 に対してN = N(ε) ≥ 1

が存在し k, l ≥ N ならば

max
x∈I

|fk(x)− fl(x)| <
ε

4

が成り立つ. x ∈ I を固定すると

|fk(x)− fl(x)| ≤ ‖fk − fl‖C(I)

が成り立つので k, l ≥ N ならば

|fk(x)− fl(x)| <
ε

4
. (0.1)

すなわち {fk(x)} *1 はK におけるコーシー列である. したがってK の完備性より収束
先 f(x) が存在して fk(x) → f(x) が成り立つ. ただしこれは x ∈ I に依存して決まる
ので

∃N1 = N1(x) ∈ N : k ≥ N1 =⇒ |fk(x)− f(x)| < ε

4

の意味である. 次に f ∈ C(I) を示そう. N∗ = max(N,N1) とすると k ≥ N ならば任意
の x ∈ I に対して

|fk(x)− f(x)| = |fk(x)− fN∗(x) + fN∗(x)− f(x)|
≤ |fk(x)− fN∗(x)|+ |fN∗(x)− f(x)|

<
ε

2
. (0.2)

*1{fk}と {fk(x)}は別のものであることに注意.
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したがって k ≥ N に対して

max
x∈I

|fk(x)− f(x)| ≤ ε

2
< ε.

このことは連続関数列 {fk} が f に一様収束することをいっているので f も連続である
ことがいえる*2. コーシー列 {fk} が C(I) の意味で f ∈ C(I) に収束することが示され
た.� �
上記の例により I = R や I = [0,∞) の場合にC(I) に sup ノルムを定義した場合も
バナッハ空間になる.� �� �
例 9. 閉区間 I = [0, 1] とする. C(I) にリーマン積分によるノルム

‖f‖R1(I) =

∫ 1

0

|f(x)|dx

を導入したものはノルム空間となるが完備でない. すなわちノルム空間であるがバ
ナッハ空間でない.� �
実際に {fk} を

fk(x) =


1 (0 ≤ x ≤ 1/2)

−2kx+ k + 1 (1/2 ≤ x ≤ 1/2 + 1/2k)

0 (1/2 + 1/2k ≤ x ≤ 1)

と定義すると k > l ≥ 1 に対して

‖fk − fl‖R1(I) =
1

4l
− 1

4k
→ 0 (k, l → ∞).

したがってコーシー列である. ところが fk はR1(I) ノルムで

f(x) =

{
1 (0 ≤ x ≤ 1/2)

0 (1/2 < x ≤ 1)

に収束する. これは不連続関数であるから完備性はないということになる.

*2連続関数列の一様収束先の極限は連続関数であることが知られている. 実際, 次の三角不等式より連
続であることが従う：

|f(x)− f(y)| = |f(x)− fk(x) + fk(y)− f(y) + fk(x)− fk(y)|
≤ |f(x)− fk(x)|+ |fk(y)− f(y)|+ |fk(x)− fk(y)|.
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� �
定理 5. バナッハ空間X とする. 距離を

d(f, g) = ‖f − g‖X

と定めることにより (X, d) は完備距離空間となる.� �
証明. ノルムの三角不等式が成り立つこと及びノルム収束に関する完備性から明らかで
ある.

縮小写像� �
距離空間 (X, d) とする. 写像 Φ : X → X が縮小写像であるとは 0 < r < 1 が存在
して

d (Φ(f), Φ(g)) ≤ rd(f, g) (f, g ∈ X)

をみたすことをいう.� �� �
定理 6 (バナッハの不動点定理a). 完備距離空間 (X, d) とする. Φ : X → X は縮小
写像であるとする. このときΦ の不動点が一意的に存在する. すなわち f ∈ X が一
意的に存在し

f = Φ(f)

をみたす.

a縮小写像の原理とも呼ばれる.� �
証明. f0 ∈ X を任意に選んで固定する.

fk = Φ(fk−1) (k ≥ 1)

と定めると k > l に対して

d(fk, fl) ≤ d(fk, fk−1) + d(fk−1, fk−2) + · · ·+ d(fl+1, fl)

となる. ここで Φ が縮小写像ということから

d(fk, fk−1) = d(Φ(fk−1), Φ(fk−2))

≤ rd(fk−1, fk−2)

...

≤ rk−1d(f1, f0)
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となるから

d(fk, fl) ≤ (rk−1 + rk−2 + · · ·+ rl)d(f1, f0)

=
rl(1− rk−l)

1− r
d(f1, f0)

≤ rl

1− r
d(f1, f0).

k > l → ∞ とすると右辺は 0 に収束するので {fk} はX のコーシー列である. X は完
備距離空間なので極限点 f ∈ X を持つ.

d(Φ(fk), Φ(f)) ≤ rd(fk, f) → 0 (k → ∞)

だから {Φ(fk)} は Φ(f) に収束するので

0 ≤ d(Φ(f), f) ≤ d(Φ(f), fk) + d(fk, f)

≤ rd(f, fk−1) + d(fk, f) → 0 (k → ∞)

なので
f = Φ(f).

不動点の存在が示された. 次に一意性を示そう. f ′ 6= f, f ′ ∈ X が存在し*3

f ′ = Φ(f ′)

をみたすとする. このとき

d(f, f ′) = d(Φ(f), Φ(f ′)) ≤ rd(f, f ′)

を得る. 移項すると
(1− r)d(f, f ′) ≤ 0

となり矛盾する. したがって f = f ′ ということになる. 以上により不動点は一意的であ
る.

*3これは f の微分を意味する記号ではないことに注意. 混同する恐れのない文脈においてはこの様な書
き方をすることがある.
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� �
補題 1 (ヤングの不等式). a, b > 0 とする. 1 < p, q < ∞ は 1/p+ 1/q = 1 をみたす
とする. このとき

ab ≤ 1

p
ap +

1

q
bq

が成り立つ.� �
証明. 条件により

(p− 1)(q − 1) = (p− 1)
1

p− 1
= 1

が成り立つ. したがって関数

y = xp−1

を x について解くと

x = y
1

p−1

= yq−1

とかける. 同じ x-y 平面内に y = xp−1 と x = yq−1 のグラフを描く. これらのグラフが
囲む面積をそれぞれ S1, S2 とすると

S1 =

∫ a

0

xp−1dx =

[
1

p
xp

]a
0

=
1

p
ap,

S2 =

∫ b

0

yq−1dy =

[
1

q
yq
]b
0

=
1

q
bq

となる. 面積を比較することにより

ab ≤ S1 + S2 =
1

p
ap +

1

q
bq

である. 以上によりヤングの不等式が証明された. 等式が成り立つのは b = ap−1 または
a = bq−1 のときに限る.
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数列空間� �
1 ≤ p ≤ ∞ とする.

lp =

a = {ak}∞k=1 ; ‖a‖lp =

(
∞∑
k=1

|ak|p
)1/p

< ∞

 (1 ≤ p < ∞),

l∞ =

{
a = {ak}∞k=1 ; ‖a‖l∞ = sup

k≥1
|ak| < ∞

}
(p = ∞)

を数列空間という.� �� �
補題 2 (ヘルダー不等式). 1 ≤ p, q ≤ ∞ は 1/p+1/q = 1 をみたすとする. このとき

∞∑
k=1

|akbk| ≤ ‖a‖lp ‖b‖lq

が成り立つ.� �
証明. p = ∞ または q = ∞ の場合は明らか. ヤングの不等式より

1

‖a‖lp ‖b‖lq

∞∑
k=1

|akbk| =
∞∑
k=1

|ak||bk|
‖a‖lp ‖b‖lq

≤ 1

p ‖a‖plp

∞∑
k=1

|ak|p +
1

q ‖b‖qlq

∞∑
k=1

|bk|q

=
1

p
+

1

q
= 1

両辺を ‖a‖lp ‖b‖lq 倍して求める不等式を得る. ここで分母が 0 の場合は求める不等式は
明らかに成り立っている.� �
定理 7. 1 ≤ p ≤ ∞ とする. lp はバナッハ空間である.� �
証明. α ∈ C, a = {ak}, b = {bk} とする. αa ∈ lp は明らか. 1 ≤ p < ∞ とする.

|ak + bk|p ≤ (|ak|+ |bk|)p

≤ (max (|ak|, |bk|) + max (|ak|, |bk|))p

= 2p max (|ak|, |bk|)p

= 2p max (|ak|p, |bk|p)
≤ 2p max (|ak|p + |bk|p, |ak|p + |bk|p)
= 2p(|ak|p + |bk|p)
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なので a+ b ∈ lp. 次にノルムの条件を満たすことを示す. 三角不等式だけ自明ではない
のでこれだけ示そう.

‖a+ b‖plp =
∞∑
k=1

|ak + bk|p

=
∞∑
k=1

|ak + bk||ak + bk|p−1

≤
∞∑
k=1

(|ak|+ |bk|)|ak + bk|p−1

≤
∞∑
k=1

(
|ak||ak + bk|p−1 + |bk||ak + bk|p−1

)
≤ (‖a‖lp + ‖b‖lp) ‖a+ b‖p−1

lp

両辺を ‖a+ b‖1−p
lp 倍して求める結果を得る. ここで分母が 0 になる場合においては明ら

かに成り立っている. p = ∞ のときは

|ak + bk| ≤ |ak|+ |bk| ≤ sup
k≥1

|ak|+ sup
k≥1

|bk|, k ≥ 1

より三角不等式が示される. これでノルムの条件を満たすことが示された. {a(j)}∞j=1 ⊂ lp

をコーシー列とする. すなわち任意の ε > 0 に対してN = N(ε) ≥ 1 が存在し

∥∥a(j) − a(l)
∥∥
lp
=

(
∞∑
k=1

∣∣∣a(j)k − a
(l)
k

∣∣∣p)1/p

<
ε

4
(j, l ≥ N)

が成り立っている. したがって

sup
k≥1

∣∣∣a(j)k − a
(k)
k

∣∣∣ ≤ ( ∞∑
k=1

∣∣∣a(j)k − a
(l)
k

∣∣∣p)1/p

<
ε

4
(j, l ≥ N)

なので
{
a
(j)
k

}∞

j=1
はC のコーシー列でもある. C は完備なので ck ∈ C が存在し

lim
j→∞

a
(j)
k = ck.

有限和と極限操作は交換できるので任意のm ≥ 1 に対してN1 = N1(ε,m) ≥ 1 が存在
し j ≥ N1 ならば (

m∑
k=1

∣∣∣a(j)k − ck

∣∣∣p)1/p

<
ε

4
.
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c = {ck}∞k=1 とおく. N∗ = max(N,N1) とおくとノルムに対する三角不等式を使って(
m∑
k=1

∣∣∣a(j)k − ck

∣∣∣p)1/p

=

(
m∑
k=1

∣∣∣a(j)k − a
(N∗)
k + a

(N∗)
k − ck

∣∣∣p)1/p

≤

(
m∑
k=1

∣∣∣a(j)k − a
(N∗)
k

∣∣∣p)1/p

+

(
m∑
k=1

∣∣∣a(N∗)
k − ck

∣∣∣p)1/p

≤

(
∞∑
k=1

∣∣∣a(j)k − a
(N∗)
k

∣∣∣p)1/p

+

(
m∑
k=1

∣∣∣a(N∗)
k − ck

∣∣∣p)1/p

<
ε

2
(j ≥ N)

が成り立つ. この式の左辺の変数 j と右辺はm に依存しないので(
∞∑
k=1

∣∣∣a(j)k − ck

∣∣∣p)1/p

= sup
m≥1

(
m∑
k=1

∣∣∣a(j)k − ck

∣∣∣p)1/p

≤ ε

2
< ε (j ≥ N).

したがって, a(j) − c ∈ lp より c ∈ lp を得る. また上式は lp-収束の意味で

lim
j→∞

a(j) = c

であることを意味する. これで完備性が示された.

ルベーグ空間� �
開集合Ω ⊂ Rn とする.

Lp(Ω) =

{
f : Ω → C; ‖f‖Lp(Ω) =

(∫
Ω

|f(x)|pdx
)1/p

< ∞

}
(1 ≤ p < ∞),

L∞(Ω) =

{
f : Ω → C; ‖f‖L∞(Ω) = ess. sup

x∈Ω
|f(x)| < ∞

}
(p = ∞)

をルベーグ空間という. Ω を省略しても混乱を生じない場合は Lp = Lp(Ω) と書く
ことがある.� �
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� �
注意 4. ここで上の定義で f はルベーグ可測関数を考えており Lp の意味で

f = 0 ⇐⇒ f(x) = 0 (a.e. x ∈ Ω)

として定義している. すなわち

f(x) = g(x) (a.e. x ∈ Ω)

のとき f = g とする. また本質的上限を

ess. sup
x∈Ω

|f(x)| = inf {M > 0; |f(x)| ≤ M (a.e. x ∈ Ω)}

と定義している.� �� �
補題 3 (ヘルダー不等式). 1 ≤ p, q ≤ ∞ は 1/p+1/q = 1 をみたすとする. このとき∫

Ω

|f(x)g(x)|dx ≤ ‖f‖Lp ‖g‖Lq

が成り立つ.� �
証明. 数列のときと同様にヤングの不等式を用いて証明できる.� �
補題 4. 1 ≤ p ≤ ∞ とする. {fk} ⊂ Lp(Ω) は∑∞

k=1 ‖fk‖Lp < ∞ をみたすとする.

このとき∑∞
k=1 fk は a.e. で収束し∑∞

k=1 fk ∈ Lp(Ω) かつ∥∥∥∥∥
∞∑
k=1

fk

∥∥∥∥∥
Lp

≤
∞∑
k=1

‖fk‖Lp

が成り立つ.� �
証明. 1 ≤ p < ∞ とする.(

m∑
k=1

|fk|

)p

↗

(
∞∑
k=1

|fk|

)p

(m → ∞)
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なので単調収束定理*1 より(∫
Ω

(
∞∑
k=1

|fk(x)|

)p

dx

)1/p

=

(
lim

m→∞

∫
Ω

(
m∑
k=1

|fk(x)|

)p

dx

)1/p

= lim
m→∞

∥∥∥∥∥
m∑
k=1

|fk|

∥∥∥∥∥
Lp

≤ lim
m→∞

m∑
k=1

‖fk‖Lp

=
∞∑
k=1

‖fk‖Lp < ∞.

したがって∑∞
k=1 fk は a.e. で収束するので主張が示せた. p = ∞ のときは

∞∑
k=1

|fk| ≤
∞∑
k=1

‖fk‖L∞

がほとんどいたるところいえるので示せた.� �
定理 8. 1 ≤ p ≤ ∞ とする. Lp(Ω) はバナッハ空間である.� �
証明. f, g ∈ Lp ならば f + g ∈ Lp であることは数列のときと同じようにして示せる. 次
に三角不等式を示そう. 1 < p < ∞ とする.

|f + g|p = |f + g|p−1|f + g| ≤ |f ||f + g|p−1 + |g||f + g|p−1

より

‖f + g‖pLp ≤
∫
Ω

(
|f(x)||f(x) + g(x)|p−1 + |g(x)||f(x) + g(x)|p−1

)
dx

≤ ‖f‖Lp ‖f + g‖p−1
Lp + ‖g‖Lp ‖f + g‖p−1

Lp

= (‖f‖Lp + ‖g‖Lp) ‖f + g‖p−1
Lp .

したがって三角不等式が示された. p = 1,∞ の場合も同様. 完備性を示したい. {fk} を
コーシー列とする.

lim
k,l→∞

‖fk − fl‖Lp = 0.

このとき k1, k2, . . . が存在し次が成り立つ

kj < kj+1,
∥∥fkj+1

− fkj
∥∥
Lp <

1

2j
.

*1fk ≥ 0 (a.e.), fk ↗ f (k → ∞) (a.e.) ならば lim
k→∞

∫
Ω

fkdm̃ =

∫
Ω

fdm̃.
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∞∑
j=1

∥∥fkj+1
− fkj

∥∥
Lp < ∞.

なので上の性質より
∞∑
j=1

(
fkj+1

− fkj
)
∈ Lp.

したがって

f = fk1 +
∞∑
j=1

(
fkj+1

− fkj
)

とおけば f ∈ Lp. さらに

f = fk1 +
l−1∑
j=1

(fkj+1
− fkj) +

∞∑
j=l

(fkj+1
− fkj)

= fk1 + (fk2 − fk1) + · · ·+ (fkl − fkl−1
) +

∞∑
j=l

(fkj+1
− fkj)

= fkl +
∞∑
j=l

(fkj+1
− fkj)

より

f − fkl =
∞∑
j=l

(fkj+1
− fkj)

なので, 上の性質より

lim
l→∞

‖fkl − f‖Lp ≤ lim
l→∞

∞∑
j=l

∥∥fkj+1
− fkj

∥∥
Lp ≤ lim

l→∞

1

2l−1
= 0.

{fk} がコーシー列なので

lim
k→∞

‖fk − f‖Lp ≤ lim
k,l→∞

(
‖fk − fkl‖Lp + ‖fkl − f‖Lp

)
= 0.

これでコーシー列が収束することが示された.
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� �
例 10. lim

|x|→∞
f(x) 6= 0 をみたす f ∈ L1(R) が存在する.

実際, 区間の幅が 1/2k となる様に Ik = (k, k + 1/2k) とすると各 k ≥ 1 に対して Ik
は可測集合である.

f(x) =

{
1 (x ∈ I ≡

⋃∞
k=1 Ik)

0 (x ∈ R \ I)

とすると ∫
R
|f(x)|dx = |I|

=
∞∑
k=1

|Ik|

=
∞∑
k=1

1

2k
< ∞.

したがって f ∈ L1(R). しかし lim
x→+∞

f(x) 6= 0 である.� �
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第4章 ヒルベルト空間

n次元ユークリッド空間Rnにおける任意のベクトルx ∈ Rnは正規直交基底{e1, e2, . . . , en}
を用いて

x =
n∑

j=1

(x, ej)Rnej

とかける. ここで (·, ·)Rn は内積である. 無限次元のベクトル空間においても内積を導入
すると都合のよいことがある.

内積空間� �
K 上の線形空間X とする. 次の (i)–(iv) を満たす写像 (·, ·)X : X ×X → K を内積
という.

(i) (f, f)X ≥ 0, f ∈ X. (f, f)X = 0 ⇐⇒ f = 0.

(ii) (f, g)X = (g, f)X (f, g ∈ X).

(iii) (f1 + f2, g)X = (f1, g)X + (f2, g)X (f1, f2, g ∈ X).

(iv) (αf, g)X = α(f, g)X (α ∈ K, f, g ∈ X).

内積が定義された線形空間を内積空間という.� �
X において内積を用いて

‖f‖X =
√

(f, f)X (f ∈ X)

と定める. ノルムと同じ記号を使ったがまだノルムであるかわからない. 以下ではこれ
がノルムとなることを示す.� �
補題 5 (コーシー・シュワルツの不等式). 内積空間X とする.

|(f, g)X | ≤ ‖f‖X ‖g‖X (f, g ∈ X)

が成り立つ.� �
証明. 証明には内積の性質のみ用いるので, 通常のユークリッド空間に対する場合と同
じである.
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� �
定理 9 (内積から定まるノルム). 内積空間X とする. 上に定めた

‖f‖X =
√
(f, f)X (f ∈ X)

はX のノルムである.� �
証明. 三角不等式が成り立つことを示せば良い. シュワルツの不等式より

‖f + g‖2X = (f + g, f + g)X

= ‖f‖2X + (f, g)X + (g, f)X + ‖g‖2X
≤ ‖f‖2X + 2|Re(f, g)X |+ ‖g‖2X
≤ ‖f‖2X + 2|(f, g)X |+ ‖g‖2X
≤ ‖f‖2X + 2‖f‖X‖g‖X + ‖g‖2X
= (‖f‖X + ‖g‖X)2

なので三角不等式が成り立つことが示された. これでノルムであることがいえたことに
なる.

ノルム空間は内積空間になるか. 以下の定理が必要十分条件を与える.� �
定理 10. ノルム空間X とする.

‖f‖X =
√
(f, f)X

をみたす内積 (·, ·)X を定義することが可能である必要十分条件は

‖f + g‖2X + ‖f − g‖2X = 2‖f‖2X + 2‖g‖2X (f, g ∈ X)

が成り立つことである.� �
証明. （必要性）内積の定義より直ちに得られる.

（十分性）

(f, g)X =

∥∥∥∥f + g

2

∥∥∥∥2
X

−
∥∥∥∥f − g

2

∥∥∥∥2
X

+ i

∥∥∥∥f + ig

2

∥∥∥∥2
X

− i

∥∥∥∥f − ig

2

∥∥∥∥2
X

とおく. 以下では (·, ·)X が内積になっていることを確かめる. 明らかに (f, f)X = ‖f‖2X
である. したがって内積の公理 (i) をみたす. また

g + if = i(−ig + f) = i(f − ig)

と
g − if = −i(ig + f) = −i(f + ig)
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なので (ii) もみたす. また (if, g)X = i(f, g)X である. したがって
(f + h, g)X = (f, g)X + (h, g)X ,

(αf, g)X = α(f, g)X (α ∈ R)

が示されればよい.(∥∥∥∥f + g

2

∥∥∥∥2
X

−
∥∥∥∥f − g

2

∥∥∥∥2
X

)
+

(∥∥∥∥h+ g

2

∥∥∥∥2
X

−
∥∥∥∥h− g

2

∥∥∥∥2
X

)

=

(∥∥∥∥f + g

2

∥∥∥∥2
X

+

∥∥∥∥h+ g

2

∥∥∥∥2
X

)
−

(∥∥∥∥f − g

2

∥∥∥∥2
X

+

∥∥∥∥h− g

2

∥∥∥∥2
X

)
となる. 上の式の右辺第 1項目に対して仮定の式

‖u+ v‖2X + ‖u− v‖2X = 2‖u‖2X + 2‖v‖2X

を u = (f + g)/2, v = (h+ g)/2 として適用して∥∥∥∥f + h

2
+ g

∥∥∥∥2
X

+

∥∥∥∥f − h

2

∥∥∥∥2
X

= 2

(∥∥∥∥f + g

2

∥∥∥∥2
X

+

∥∥∥∥h+ g

2

∥∥∥∥2
X

)
を得て u = (f − g)/2, v = (h− g)/2 として適用して∥∥∥∥f + h

2
− g

∥∥∥∥2
X

+

∥∥∥∥f − h

2

∥∥∥∥2
X

= 2

(∥∥∥∥f − g

2

∥∥∥∥2
X

+

∥∥∥∥h− g

2

∥∥∥∥2
X

)
,

したがって元の式に戻ると(∥∥∥∥f + g

2

∥∥∥∥2
X

−
∥∥∥∥f − g

2

∥∥∥∥2
X

)
+

(∥∥∥∥h+ g

2

∥∥∥∥2
X

−
∥∥∥∥h− g

2

∥∥∥∥2
X

)

=

(∥∥∥∥f + g

2

∥∥∥∥2
X

+

∥∥∥∥h+ g

2

∥∥∥∥2
X

)
−

(∥∥∥∥f − g

2

∥∥∥∥2
X

+

∥∥∥∥h− g

2

∥∥∥∥2
X

)

=
1

2

(∥∥∥∥f + h

2
+ g

∥∥∥∥2
X

−
∥∥∥∥f + h

2
− g

∥∥∥∥2
X

)

= 2


∥∥∥∥∥∥∥
f + h

2
+ g

2

∥∥∥∥∥∥∥
2

X

−

∥∥∥∥∥∥∥
f + h

2
− g

2

∥∥∥∥∥∥∥
2

X

 .

同様にして (∥∥∥∥f + ig

2

∥∥∥∥2
X

−
∥∥∥∥f − ig

2

∥∥∥∥2
X

)
+

(∥∥∥∥h+ ig

2

∥∥∥∥2
X

−
∥∥∥∥h− ig

2

∥∥∥∥2
X

)

= 2


∥∥∥∥∥∥∥
f + h

2
+ ig

2

∥∥∥∥∥∥∥
2

X

−

∥∥∥∥∥∥∥
f + h

2
− ig

2

∥∥∥∥∥∥∥
2

X

 .
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以上により
(f, g)X + (h, g)X

=

(∥∥∥∥f + g

2

∥∥∥∥2
X

−
∥∥∥∥f − g

2

∥∥∥∥2
X

)
+

(∥∥∥∥h+ g

2

∥∥∥∥2
X

−
∥∥∥∥h− g

2

∥∥∥∥2
X

)

+ i

(∥∥∥∥f + ig

2

∥∥∥∥2
X

−
∥∥∥∥f − ig

2

∥∥∥∥2
X

)
+ i

(∥∥∥∥h+ ig

2

∥∥∥∥2
X

−
∥∥∥∥h− ig

2

∥∥∥∥2
X

)

= 2


∥∥∥∥∥∥∥
f + h

2
+ g

2

∥∥∥∥∥∥∥
2

X

−

∥∥∥∥∥∥∥
f + h

2
− g

2

∥∥∥∥∥∥∥
2

X

+ 2i


∥∥∥∥∥∥∥
f + h

2
+ ig

2

∥∥∥∥∥∥∥
2

X

−

∥∥∥∥∥∥∥
f + h

2
− ig

2

∥∥∥∥∥∥∥
2

X


= 2

(
f + h

2
, g

)
X

.

(0, g)X = 0 なので, 上の式で h = 0 とおくと

(f, g)X = 2

(
f

2
, g

)
X

.

すなわち一般に
2
(u
2
, v
)
X
= (u, v)

なので上の式に適用すると
(f, g)X + (h, g)X = (f + h, g)X .

次に k,m ∈ N \ {0} に対して (m
k
f, g
)
X
=

m

k
(f, g)X

が成り立つ. また ((m
k

− m

k

)
f, g
)
X
= (0 · f, g)X = 0

なので (m
k
f − m

k
f, g
)
X
=
(m
k
f, g
)
X
+
(
−m

k
f, g
)
X
= 0.

したがって (
−m

k
f, g
)
X
= −m

k
(f, g)X .

すなわち任意の r ∈ Q に対して
(rf, g)X = r(f, g)X .

任意α ∈ R に対して {rk} ⊂ Q が存在して rk −−−→
k→∞

α となっているので内積の連続性を
用いると

(αf, g)X = lim
k→∞

(rkf, g)X = lim
k→∞

rk(f, g)X = α(f, g)X

となる.
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ヒルベルト空間� �
内積空間X がノルム

‖f‖X =
√

(f, f)X (f ∈ X)

に関して完備であるときX をヒルベルト空間という.� �� �
例 11. Rn は最も身近なヒルベルト空間のひとつである. Rn の内積は以下で定まる
通常の内積である.

(x, y)Rn = x · y =
n∑

j=1

xjyj.

� �� �
例 12. Cn はヒルベルト空間である. 内積は以下で定義される.

(z1, z2)Cn = (x1 + iy1) · (x2 + iy2)

= x1 · x2 + y1 · y2 + iy1 · x2 − ix1 · y2

ここで zj = xj + iyj (xj, yj ∈ Rn) である. またノルムは

‖z‖Cn =
√
‖x‖2Rn + ‖y‖2Rn (z = x+ iy ∈ Cn).� �� �

例 13. 数列空間 l2 に

(a, b)l2 =
∞∑
k=1

akbk

と定義すると (·, ·)l2 は内積になっていて l2 はヒルベルト空間となる.� �� �
問題 2. l2 がヒルベルト空間であることを証明せよ. ただし完備性は既知として用
いてよい.� �� �
例 14. ルベーグ空間 L2(Ω) とする.

(f, g)L2 =

∫
Ω

f(x)g(x)dx

と定義すると (·, ·)L2 は内積になっていてL2(Ω) はヒルベルト空間となる. これは簡
単なので先程の例を模倣して自分で確かめてみよう.� �
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射影定理
直交� �
ヒルベルト空間X とする. A,B ⊂ X が互いに直交するとは

(f, g)X = 0 (f, g ∈ A)

が成り立つことをいう. このことをA ⊥ B とかく. ⊥ を垂直記号という.� �
記法� �
f ∈ X とする.

{f} ⊥ B = f ⊥ B

とかく. また f ∈ A と g ∈ B に対して (f, g)X = 0 であることを f ⊥ g とかく.� �� �
例 15. f ∈ X とする. f ⊥ X ならば f = 0 である.� �
証明. 仮定により任意の g ∈ X に対して

(f, g)X = 0

が成り立つ. とくに g = f に対しても成り立つので
‖f‖2X = (f, f)X = 0.

以上により f = 0.

直交補空間� �
L ⊂ X とする.

L⊥ = {f ∈ X; f ⊥ L}

を L の直交補空間という.� �� �
定理 11. L⊥ は閉部分空間である.� �
証明. {fk} ⊂ L⊥ を f ∈ X に収束する点列とする. このとき f ∈ L⊥ を示ば良い.

|(f − fk, g)X | ≤ ‖fk − f‖X ‖g‖X −−−→
k→∞

0

より
0 = (fk, g)X −−−→

k→∞
(f, g)X = 0

を得る. g ∈ L の任意性より示された.
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� �
定理 12. f, g ∈ X とする. f ⊥ g のとき

‖f + g‖2X = ‖f‖2X + ‖g‖2X

が成り立つ.� �
証明. 内積を展開することにより直ちに得ることができる.� �
定理 13 (射影定理). 閉部分空間 L ⊂ X とする. 任意の f ∈ X は

f = g + h (g ∈ L, h ∈ L⊥)

と一意的に分解される.� �
証明. まず一意性を示す.

f = g + h = g′ + h′ (g, g′ ∈ L, h, h′ ∈ L⊥)

と分解されたとする. このとき

g − g′ = h− h′

で h− h′ ∈ L⊥ なので

‖g − g′‖2X = (g − g′, h− h′)X = 0

となる. すなわち g = g′. したがって h = h′ も得るので分解の仕方は一意的であること
がわかった.

次に分解が可能であることを示す.

δ = inf
ξ∈L

‖f − ξ‖X

とおくと {ξk} ⊂ L で

lim
k→∞

‖f − ξk‖X = δ

なるものが存在する*1. 以下の等式が成り立つ（中線定理と呼ばれるものである）

‖f + g‖2X + ‖f − g‖2X
= (f + g, f + g)X + (f − g, f − g)X

= ‖f‖2X + ‖g‖2X + (f, g)X + (g, f)X + ‖f‖2X + ‖g‖2X − (f, g)X − (g, f)X

= 2(‖f‖2X + ‖g‖2X).
*1下限の特徴づけより任意の k ≥ 1 に対して ξk ∈ L が存在し δ ≤ ‖f − ξk‖X < δ + 1/k が成り立つ.
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したがって
‖(f − ξk) + (f − ξj)‖2X + ‖(f − ξk)− (f − ξj)‖2X = 2 ‖f − ξk‖2X + ‖f − ξj‖2X .

(1/2)(ξk + ξj) ∈ L なので

δ2 ≤
∥∥∥∥f − ξk + ξj

2

∥∥∥∥2
X

.

したがって

0 ≤ ‖ξk − ξj‖2X = 2
(
‖f − ξk‖2X + ‖f − ξj‖2X

)
− 4

∥∥∥∥f − ξk + ξj
2

∥∥∥∥2
X

≤ 2
(
‖f − ξk‖2X + ‖f − ξj‖2X

)
− 4δ2

→ 0 (k, j → ∞)

となる. したがって {ξk} はX のコーシー列なのでX において収束するが L は閉部分
集合なので g ∈ L が存在し ξk → g (k → ∞) となる. したがって

δ = ‖f − g‖X
を得る.

h = f − g

とおく. h ⊥ L を示せば証明が終わる. 任意に固定した ξ ∈ L に対して
φ(t) = ‖h− γtξ‖2X , t ∈ R

とおく. ここで γ = (h, ξ). g + γtξ ∈ L なので δ2 = φ(0) ≤ φ(t), t ∈ R. 内積を計算し
φ(t) = ‖h‖2X − 2|γ|2t+ |γ|2t2 ‖ξ‖2X .

もし γ 6= 0 ならば t が十分小さいと φ(t) < φ(0) = δ2. となり矛盾. したがって γ = 0.

すなわち h ⊥ L.

直和� �
閉部分空間 L1, L2 ⊂ X が L1 ⊥ L2 をみたすとき

L1 ⊕ L2 =
{
f ∈ X; f = f1 + f2 (f1 ∈ L1, f2 ∈ L2)

}
を直和という.� �� �
注意 5 (射影定理の解釈). 射影定理より上の f1, f2 は f に対して一意に定まる. 射
影定理のいっていることは L ⊂ X を閉部分空間とすれば

X = L⊕ L⊥

が成り立つということである.� �
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正規直交系� �
ヒルベルト空間X とする. A ⊂ X が正規直交系であるとは

(f, g)X =

{
1 (f = g)

0 (f 6= g)

が成り立つことをいう.� �� �
例 16. もっとも簡単な例のひとつであるがX = R3 において

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)

に対して

A = {e1, e2, e3}

とするとA ⊂ X は正規直交系である.� �� �
例 17. X = L2(−π, π) とする. A = {(2π)−1/2eikx}k∈Z は正規直交系である.� �
これを確かめてみよう. L2(−π, π) の内積を取れば良い.

1. j 6= kのとき

((2π)−1/2eijx, (2π)−1/2eikx)L2([−π,π]) = (1/2π)

∫ π

−π

eijxeikxdx

= (1/2π)

∫ π

−π

ei(j−k)xdx

=
1

2πi(j − k)
[ei(j−k)x]π−π

= 0.
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2. j = kのとき

((2π)−1/2eijx, (2π)−1/2eikx)L2([−π,π]) = (1/2π)

∫ π

−π

eijxeikxdx

= (1/2π)

∫ π

−π

ei(j−k)xdx

= (1/2π)

∫ π

−π

dx = 1.

以上でA = {(2π)−1/2eikx}k∈Z が正規直交系であることがいえた. このことはまた
dimL2(−π, π) = ∞

であることを意味している.� �
命題 2. {fk} ⊂ X を正規直交系とする. このとき(

k∑
j=1

αjfj,

k∑
m=1

βmfm

)
X

=
k∑

j=1

αjβj

が成り立つ.� �
問題 3. この命題を証明せよ.� �
命題 3 (ベッセルの不等式). X をヒルベルト空間とする. {fk} ⊂ X を正規直交系
とする. 任意の f ∈ X に対して

∞∑
k=1

|(f, fk)X |2 ≤ ‖f‖2X

が成り立つ.� �
証明. αj = (f, fj)X とおくと k ≥ 1 に対して

0 ≤

∥∥∥∥∥f −
k∑

j=1

αjfj

∥∥∥∥∥
2

X

= ‖f‖2X −
k∑

j=1

αj(f, fj)X −
k∑

j=1

αj(fj, f)X +
k∑

j,m=1

αjαm(fj, fm)X

= ‖f‖2X −
k∑

j=1

αjαj −
k∑

j=1

αjαj +
k∑

j=1

αjαj

= ‖f‖2X −
k∑

j=1

|αl|2
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なので
k∑

j=1

|(f, fj)X |2 ≤ ‖f‖2X .

k → ∞ として所望の不等式を得る*1.� �
X をヒルベルト空間とする. {fk} ⊂ X を正規直交系とする.

L0 =

{
k∑

j=1

αjfj (k ≥ 1); αj ∈ K (1 ≤ j ≤ k)

}

として L = L0 とおくa.

aすなわち L は正規直交系により生成される閉部分空間である.� �� �
注意 6. 射影定理によってX は L = L0 によって

X = L⊕ L⊥

と表される. すなわち f ∈ X は

f = g + h (g ∈ L, h ∈ L⊥)

とかくことができる.� �
正射影作用素� �
閉部分空間 L ⊂ X とする. X = L⊕ L⊥ における写像 PL : X → L を

PLf = g (f = g + h, g ∈ L, h ∈ L⊥)

と定める. PL を正射影作用素という.� �� �
命題 4. L = L0 とする. このとき任意の f ∈ X に対して

PLf =
∞∑
k=1

(f, fk)Xfk.

さらに任意の f, f ′ ∈ X に対して

(PLf, PLf
′)X =

∞∑
k=1

(f, fk)X(f ′, fk)X .

� �
*1微積分学で学習する上に有界な単調増加列は収束するという事実を用いた.
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証明. αj = (f, fj) とおく. k > l とする∥∥∥∥∥
k∑

j=1

αjfj −
l∑

j=1

αjfj

∥∥∥∥∥
2

X

=

∥∥∥∥∥
k∑

j=l+1

αjfj

∥∥∥∥∥
2

X

=
k∑

j=l+1

k∑
m=l+1

(αjfj, αmfm)X

=
k∑

j=l+1

k∑
m=l+1

αjαm (fj, fm)X

=
k∑

j=l+1

|αj|2.

ベッセルの不等式より右辺は収束するので k > l → ∞ とすると 0 に収束する. よって{∑k
j=1 αjfj

}
は閉集合 L における収束列である. その極限点を g =

∑∞
j=1 αjfj ∈ L と

おく*2. このとき

(f − g, fm)X = lim
k→∞

(
f −

k∑
j=1

αjfj, fm

)

= lim
k→∞

(f, fm)X −

(
k∑

j=1

αjfj, fm

)
X


= lim

k→∞

[
(f, fm)X −

k∑
j=1

αj (fj, fm)X

]
= lim

k→∞
[(f, fm)X − αm]

= 0.

ここで 4番目の等式ではクロネッカーのデルタ

δj,m =

{
1 (j = m)

0 (j 6= m)

に対して (fj, fm)X = δj,m であることを用いた. 以上のことから (f − g) ⊥ L0. 任意の
ξ ∈ L に対して収束する点列 {ξq} ⊂ L0 が存在するので

(f − g, ξ)X = lim
q→∞

(f − g, ξq)X

= 0.

*2 lim
k→∞

∥∥∥∥∥∥
k∑

j=1

αjfj − g

∥∥∥∥∥∥
X

= 0という意味.
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ゆえに f − g ∈ L⊥ である*3. したがって

PLf = g =
∞∑
j=1

αjfj.

最後の式を証明するためにαj = (f, fj)X , α
′
j = (f ′, fj)X とおくとシュワルツの不等式と

ベッセルの不等式より
k∑

j=1

|αjα′
j| ≤

(
k∑

j=1

|αj|2
)1/2( k∑

j=1

|α′
j|2
)1/2

≤ ‖f‖X‖f ′‖X

を得る. これで
{∑k

j=1 αjα′
j

}
が絶対収束することがいえる. したがって

(PLf, PLf
′)X = lim

k→∞

(
k∑

j=1

αjfj,

k∑
m=1

α′
mfm

)
X

= lim
k→∞

k∑
j=1

k∑
m=1

αjα′
m (fj, fm)X

= lim
k→∞

k∑
j=1

αjα′
j

=
∞∑
j=1

αjα′
j.

次の定理を示すことがこの章の目的である.

*3内積の連続性を用いた. シュワルツの不等式からすぐに得られる.
実際, |(f − g, ξ)X − (f − g, ξq)X | = |(f − g, ξ − ξq)X | ≤ ‖f − g‖X‖ξ − ξq‖X → 0, q → ∞.
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� �
定理 14 (完全正規直交系). X とL を上で導入したものとし, 正規直交系 {fk} ⊂ X

とする. 次の条件 (i) ∼ (v)は同値である.

(i) L = X.

(ii) 任意の f ∈ X に対して f =
∞∑
k=1

(f, fk)Xfk.

(iii) 任意の f ∈ X に対して ‖f‖2X =
∞∑
k=1

|(f, fk)X |2 .

(iv) 任意の f, f ′ に対して (f, f ′)X =
∞∑
k=1

(f, fk)X(f ′, fk)X .

(v) 任意の k ∈ N に対して (f, fk)X = 0 ならば f = 0.

上の条件 (i) ∼ (v) のどれかを満たすとき {fk} はX の完全正規直交系であるとい
うa.

aすなわち (i) ∼ (v)のどれかで完全正規直交系であることを定義していて, どの定義を採用して
も同値ということである.� �
証明.

(i) =⇒ (ii) :

(i) を仮定すると PLf = f なので先程の命題より (ii) が成り立つ.

(ii) =⇒ (iv) :

(ii) を仮定すると f = PLf となるので f ∈ L を得る. 先程の命題より (iv) が成り立つ.

(iv) =⇒ (iii) :

これは明らかである.

(iii) =⇒ (v) :

これは明らかである.

(v) =⇒ (i) :

(v) を仮定する. もし f ∈ L⊥ ならば (f, fk)X = 0 (∀k ≥ 1). よって f = 0. したがって
L⊥ = {0} となる. 射影定理よりX = L となる. よって (i) が成り立つ.

L2(−π, π)における完全正規直交系とフーリエ級数
L2 = L2(−π, π) とかくことがある. f ∈ L2 のフーリエ係数 f̂ を

f̂(k) = (2π)−1/2

∫ π

−π

e−ikxf(x)dx (k ∈ Z)

と定義する.
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� �
定理 15. A = {(2π)−1/2eikx}k∈Z は L2(−π, π) における完全正規直交系である.� �� �
補題 6 (C∞

0 (−π, π)の L2における稠密性). 次が成り立つ.

C∞
0 (−π, π)

L2

= L2.

ここで, X ⊂ L2 に対してX
L2

は L2-ノルムにより定まる位相における閉包を意味
する.� �
証明. この補題は重要であるが, ここでは証明しない. 適当な文献を参照のこと.

定理の証明
証明. 正規直交性は既に示したので, ここでは完全性を証明すればよい.

Step 1 v ∈ C∞
0 (−π, π) とする. v(−π) = v(π) = 0 である. v を周期 2π の周期関数と

してR 全体に拡張する. 基本的なフーリエ級数の収束定理により各点収束の意味で

v(x) = lim
N→∞

SN [v](x) (∀x ∈ (−π, π))

が成り立つ. ここで, フーリエ級数の部分和

SN [v] = (2π)−1/2

N∑
k=−N

v̂(k)eikx (N ≥ 1)

である. ベッセルの不等式の証明と同じ様な計算により

‖v − SN [v]‖2L2 = ‖v‖L2 −
N∑

k=−N

|v̂(k)|2

を得る.

|v − SN [v]|2 ≤ |v|2 + 2|v|SN [v] + SN [v]
2,

|SN [v]| ≤ (2π)−1‖v‖L1(−π,π)(2N + 1) ∈ L2(−π, π) (∀N ≥ 1),

SN [v](x) −−−→
N→∞

v(x) (∀x ∈ (−π, π))

なのでルベーグ収束定理により limN→∞ ‖v − SN [v]‖L2 = 0. したがって

‖v‖2L2 = ‖v̂‖2l2(Z) .

Step 2 f ∈ L2 とする. 稠密性により {vj} ⊂ C∞
0 (−π, π) が存在し vj −−−→

j→∞
f in L2 が

成り立つ. これと三角不等式により*4 ‖vj‖L2 −−−→
j→∞

‖f‖L2 を得る. またベッセルの不等
*4
∣∣‖a‖X − ‖b‖X

∣∣ ≤ ‖a− b‖X .
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式により ∥∥∥f̂ − v̂j

∥∥∥
l2(Z)

=
∥∥∥f̂ − vj

∥∥∥
l2(Z)

≤ ‖f − vj‖L2 −−−→
j→∞

0

となるので ‖v̂j‖L2 −−−→
j→∞

∥∥∥f̂∥∥∥
L2

. 以上により

‖vj‖2L2 = ‖v̂j‖2l2(Z)
↓ ↓ (j → ∞)

‖f‖2L2

∥∥∥f̂∥∥∥2
l2(Z)

となるので極限点の一意性により

‖f‖2L2 =
∥∥∥f̂∥∥∥2

l2(Z)
.

以上と定理 14 の (iii) によりA =
{
(2π)−1/2eikx

}
k∈Z は完全正規直交系である.

上の定理により L2 におけるフーリエ級数の展開に関する定理を得る.� �
定理 16. 任意の f ∈ L2(−π, π) に対して

lim
N,M→∞

∥∥∥∥∥f − (2π)−1/2

N∑
k=−M

f̂(k)eikx

∥∥∥∥∥
L2

= 0

が成り立つ.� �� �
注意 7. 上の極限の意味で f ∈ L2(−π, π) は

f = (2π)−1/2

∞∑
k=−∞

f̂(k)eikx

と展開される.� �� �
注意 8. Zの元をNの元と対応させて数えるのと同じ様にして{eikx}∞k=−∞ を{ek}∞k=1

の形でかける. この事実は上の議論でしばしば用いている.� �
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線形作用素
線形作用素� �
X,Y を線形空間とするa. 線形部分空間D ⊂ X とする. T : D → Y が線形である
とは

T (αf + βg) = αT (f) + βT (g) (f, g ∈ D, α, β ∈ K)

が成り立つことをいう. 線形な写像を線形作用素という.

aノルム空間やバナッハ空間であることは仮定していないことに注意.� �
記法� �
T の定義域D をD(T ) とかくことがある. また

R(T ) = {T (f); f ∈ D(T )}

を T の値域という.� �� �
例 18. X = D = C([0, 1]), Y = C([0, 1]) とする. f ∈ D に対して

T (f)(x) =

∫ x

0

f(t)dt (x ∈ [0, 1])

と定めると T は線形作用素である.� �
このことを確かめてみよう.

第 1段
まず前提として T : C([0, 1]) → C([0, 1]) すなわち T がC([0, 1]) のなかの写像である
ことを示しておく必要がある. f ∈ C([0, 1]) に対して T (f) は微分可能なので連続であ
る*1. したがって T (f) ∈ C([0, 1]) である.

*1微分積分学の基本定理より (T (f))′(x) = f(x)である.
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第 2段
次に線形性を示そう.

T (αf + βg)(x) =

∫ x

0

(αf(t) + βg(t))dt

= α

∫ x

0

f(t)dt+ β

∫ x

0

g(t)dt

= αT (f)(x) + βT (g)(x)

なので T (αf + βg) = αT (f) + βT (g) が成り立っている.� �
例 19. X = C([0, 1]) とする. 定義域をD = C1([0, 1]) として Y = C([0, 1]) とする.

このとき f ∈ D に対して

T (f)(x) = f ′(x) (x ∈ [0, 1])

と定めると T は線形作用素である.� �
このことを確かめてみよう

第 1段
先ほどの例と同様に f ∈ C1([0, 1]) に対して T (f) = f ′ ∈ C([0, 1]) を確かめる必要が
あるのだが, これは f ∈ C1([0, 1]) ということの定義が f ′ が [0, 1] で連続であるというこ
となので明らかである.

第 2段
次に線形性であるが

T (αf + βg)(x) = (αf + βg)′(x)

= αf ′(x) + βg′(x)

= αT (f)(x) + βT (g)(x)

なので T (αf + βg) = αT (f) + βT (g) が成り立っている.

恒等作用素� �
線形空間X とする. I(f) = f なる作用素 I : X → X を恒等作用素というa.

a明らかに線形である.� �
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作用素の連続性・有界性
連続線形作用素� �
ノルム空間X,Y とする. D(T ) ⊂ X とする. 線形作用素 T : D(T ) → Y が連続であ
るとは

lim
k→∞

‖fk − f‖X = 0

ならば

lim
k→∞

‖T (fk)− T (f)‖Y = 0

が成り立つことをいう. 連続な線形作用素を連続線形作用素という. 連続線形作用
素を単に連続作用素と呼ぶことがある.� �
有界線形作用素� �
ノルム空間X,Y とする. D(T ) ⊂ X とする. 線形作用素 T : D(T ) → Y が有界であ
るとはM > 0 が存在し

‖T (f)‖Y ≤ M ‖f‖X (f ∈ D(T ))

が成り立つことをいう. 有界線形作用素を単に有界作用素と呼ぶことがある.� �
次の定理は重要である.� �
定理 17. ノルム空間X,Y とする. D(T ) ⊂ X とする. 線形作用素 T : D(T ) → Y

が連続作用素であることの必要十分条件は有界作用素であることである.� �
証明.

(十分性) 有界性を仮定すると

‖T (fk)− T (f)‖Y = ‖T (fk − f)‖Y ≤ M ‖fk − f‖X → 0 (k → ∞)

より連続性がいえる.

(必要性) 連続性を仮定する. 有界でないとすると任意のM > 0 に対して f ∈ D(T ) が
存在し

‖T (f)‖Y > M ‖f‖X

が成り立つ. するとM = k に対して fk ∈ D(T ) が存在し上の不等式が成り立つ.

gk =
1√

k ‖fk‖X
fk
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とおくと ‖gk‖X = 1/
√
k であり gk → 0 (k → ∞) in X.

‖T (gk)‖Y =
1√

k ‖fk‖X
‖T (fk)‖Y

>
1√

k‖fk‖X
· (k‖fk‖X)

=
√
k → ∞ (k → ∞)

これは連続であることに矛盾する.

記法� �
D(T ) = X となる有界線形作用素の全体を L(X,Y ) とかく. また L(X) = L(X,X)

とかく.� �
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作用素の和とスカラー倍� �
X を線形空間とする. D ⊂ X で定義されたふたつの線形作用素 T, S について作用
素の和 T + S とスカラー倍 αT を

(i) (T + S)(f) = T (f) + S(f).

(ii) (αT )(f) = α(T (f)).

で定義する.� �
作用素ノルム� �
ノルム空間X,Y とする. 有界線形作用素 T : D(T ) ⊂ X → Y に対して

‖T‖B = sup
f ̸=0

‖T (f)‖Y
‖f‖X

と定義する. とくにD(T ) = X の場合のみ考える場合, すなわち T ∈ L(X,Y ) のみ
考える場合は

‖T‖L(X,Y ) = sup
f ̸=0

‖T (f)‖Y
‖f‖X

とかく.� �� �
注意 9. ‖ · ‖B はノルムとしての条件をみたす. したがって L(X,Y ) はノルム空間
となる.� �
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� �
例 20 (積分作用素). I = [a, b] とする.

T (f) =

∫ b

a

f(x)dx (f ∈ C(I))

と定義すると T ∈ L(C(I),R) で ‖T‖L(C(I),R) = b − a となる. このことを確かめて
みよう. まず

|T (f)| ≤ (b− a)‖f‖C(I)

なので ‖T‖L(C(I),R) ≤ b− a. f ≡ 1 なる f ∈ C(I) に対して

b− a =
|T (f)|
‖f‖C(I)

≤ ‖T‖L(C(I),R).

� �� �
例 21 (ヒルベルト・シュミット型積分作用素). I = (0, 1) とする. k ∈ L2(I × I) と
する. f ∈ L2(I) に対して

T (f)(t) =

∫
I

k(t, s)f(s)ds (t ∈ I)

と定義すると T ∈ L(L2) となる. このことを確かめてみよう. ヘルダーの不等式に
よりこの積分は意味を持つことが確かめられる.

|T (f)(t)| =
∣∣∣∣∫

I

k(t, s)f(s)ds

∣∣∣∣
≤
∫
I

|k(t, s)||f(s)|ds

≤ ‖k(t, ·)‖L2(I)‖f‖L2(I) < ∞.

この不等式の両辺を t に関して L2-ノルムをとり

‖T (f)(t)‖L2
t (I)

≤ ‖k‖L2(I×I)‖f‖L2(I)

を得る. したがって T : L2(I) → L2(I) である. また線形性は明らかであるa. 上の
評価式より有界であることがいえていて ‖T‖L(L2) ≤ ‖k‖L2(I×I) を得る.

a自分で確かめてみよう.� �
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� �
例 22 (フーリエ変換). T を次の様に定義する.

T (f)(x) = (2π)−n/2

∫
Rn

e−iξ·xf(x)dx (f ∈ L1(Rn)).

T ∈ L(L1, L∞) となる. このことを確かめてみよう. ヘルダーの不等式より次を
得る.

|T (f)(x)| =
∣∣∣∣(2π)−n/2

∫
Rn

e−iξ·xf(x)dx

∣∣∣∣
≤ (2π)−n/2

∫
Rn

|e−iξ·xf(x)|dx

= (2π)−n/2

∫
Rn

|f(x)|dx

= (2π)−n/2‖f‖L1 .

線形性は明らかであるa. 両辺の L∞-ノルムをとると

‖T (f)‖L∞ ≤ (2π)−n/2‖f‖L1 .

したがって T : L1 → L∞ である. 以上より ‖T‖L(L1,L∞) ≤ (2π)−n/2. T はフーリエ
変換と呼ばれる. ここでは詳しく扱わないが, 1 ≤ p ≤ 2 に対してフーリエ変換は
T : Lp → Lp′ の有界線形作用素として定義することができるb. ここで, p′ = p/(p−1).

a自分で確かめてみよう.
bもっと一般の緩増加超関数のクラス S ′(Rn)というものに対してフーリエ変換は定義される.� �� �

定理 18. ノルム空間X,Y とする. 有界線形作用素 T : D(T ) ⊂ X → Y とする. こ
のとき

‖T‖B = sup
∥f∥X=1

‖T (f)‖Y = sup
∥f∥X≤1

‖T (f)‖Y

が成り立つ.� �
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証明.

‖T‖B = sup
f ̸=0

‖T (f)‖Y
‖f‖X

= sup
f ̸=0

∥∥∥∥T ( f

‖f‖X

)∥∥∥∥
Y

≤ sup
∥f∥X=1

‖T (f)‖Y

≤ sup
0<∥f∥X≤1

‖T (f)‖Y

≤ sup
0<∥f∥X≤1

‖T (f)‖Y
‖f‖X

≤ ‖T‖B

により成り立つ*1.� �
定理 19 (完備性). X をノルム空間とする. Y がバナッハ空間であればL(X,Y ) は
完備, すなわちバナッハ空間となる.� �
証明. {Tk} ⊂ L(X,Y ) をコーシー列としよう. すなわち, 任意の ε > 0 に対してN1 =

N1(ε) ≥ 1 が存在し k, l ≥ N1 ならば

‖Tk − Tl‖L(X,Y ) <
ε

4
.

任意の f ∈ X \ {0} とする. k, l ≥ N1 ならば∥∥∥∥Tk

(
f

‖f‖X

)
− Tl

(
f

‖f‖X

)∥∥∥∥
Y

≤ ‖Tk − Tl‖L(X,Y ) <
ε

4
(0.1)

なので{Tk (f/‖f‖X)} ⊂ Y もコーシー列である. Y はバナッハ空間だから{Tk (f/‖f‖X)} ⊂
Y は収束する. 線形性により

Tk(f) = ‖f‖XTk

(
f

‖f‖X

)
なので {Tk(f)} ⊂ Y も収束する*2. 以上により, 任意の f ∈ X に対して

T (f) = lim
k→∞

Tk(f)

*1ここでT 6= 0の場合が本質的なので sup
0<∥u∥X≤1

‖T (u)‖Y ≤ sup
∥u∥X≤1

‖T (u)‖Y と任意の ‖u‖X ≤ 1に対し

て ‖T (u)‖Y ≤ max

(
‖T (0)‖Y , sup

0<∥u∥X≤1

‖T (u)‖Y

)
≤ sup

0<∥u∥X≤1

‖T (u)‖Y . 以上により sup
∥u∥X≤1

‖T (u)‖ =

sup
0<∥u∥X≤1

‖T (u)‖Y .
*2f = 0のときも Tk(0) = 0なので収束する.
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とおくことで T : X → Y が定義される. またN∗ = N∗(f) ≥ 1 が存在し k ≥ N∗ ならば
‖Tk(f)− T (f)‖Y <

ε

4

である. 次のことが示せれば良い.

• T ∈ L(X,Y ) である
• T が {Tk} ⊂ L(X,Y ) の収束先である

f ∈ X とする.

‖Tk(f)‖Y ≤ ‖Tk‖L(X,Y )‖f‖X
なので

‖T (f)‖Y = lim
k→∞

‖Tk(f)‖Y ≤
(
lim
k→∞

‖Tk‖L(X,Y )

)
‖f‖X .

したがって T ∈ L(X,Y ) *3. 任意の g ∈ X で ‖g‖X = 1 なるものとする. g = g/‖g‖X
なので (0.1) は g に対しても成り立つ. N = N(g) = max(N1, N

∗(g)) とおく. このとき
k ≥ N1 ならば

‖Tk(g)− T (g)‖Y = ‖Tk(g)− TN(g) + TN(g)− T (g)‖Y <
ε

2
(0.2)

を得る. k ≥ N1 に対して*4

‖Tk − T‖L(X,Y ) = sup
∥g∥X=1

‖Tk(g)− T (g)‖Y ≤ ε

2
< ε (0.3)

がいえる. これは L(X,Y ) における収束の意味で lim
k→∞

Tk = T を意味する. 以上で完備
性, すなわちL(X,Y ) がバナッハ空間であることが示された.� �
定理 20 (拡張定理). バナッハ空間 X,Y とする. 定義域が X で稠密, すなわち
D(T ) = X なる有界線形作用素 T : D(T ) ⊂ X → Y とする. このとき T は
D
(
T̃
)
= X で

T (u) = T̃ (u) (u ∈ D(T )),

‖T‖B =
∥∥∥T̃∥∥∥

B

をみたす有界線形作用素 T̃ へ一意的に拡張できる.� �
*3ここで

|‖Tk(f)‖Y − ‖T (f)‖Y | ≤ ‖Tk(f)− T (f)‖Y → 0 (k → ∞)

であることより lim
k→∞

‖Tk(f)‖Y = ‖T (f)‖Y である. また∣∣‖Tk‖L(X,Y ) − ‖Tl‖L(X,Y )

∣∣ ≤ ‖Tk − Tl‖L(X,Y ) → 0 (k, l → ∞)

より {‖Tk‖L(X,Y )} が実数におけるコーシー列であることがいえる. したがってこの文脈で登場した極限
は極限値の存在が保証されている.

*4N1 は f に依存していない.
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証明. 任意の u ∈ X に対して点列 {uk} ⊂ D(T ) が存在し uk −−−→
k→∞

u となる. このとき

‖T (uk)− T (ul)‖Y ≤ ‖T‖B‖uk − ul‖X −−−−→
k,l→∞

0

なので {T (uk)} ⊂ Y はコーシー列. したがって y ∈ Y が存在し T (uk) −−−→
k→∞

y. y は u

に収束する点列の選び方によらずに一意に定まる. 実際, {uk
′} も uk

′ −−−→
k→∞

u をみたす
点列として y′ = lim

k→∞
T (uk

′) とすると

‖y − y′‖Y = ‖y − T (uk) + T (uk)− T (uk
′) + T (uk

′)− y′‖Y
≤ ‖y − T (uk)‖Y + ‖T (uk)− T (uk

′)‖Y + ‖T (uk
′)− y′‖Y

≤ ‖y − T (uk)‖Y + ‖T‖B‖uk − uk
′‖X + ‖T (uk

′)− y′‖Y
≤ ‖y − T (uk)‖Y + ‖T‖B‖uk − u‖X + ‖T‖B‖u− uk

′‖X + ‖T (uk
′)− y′‖Y

−−−→
k→∞

0.

したがって

lim
k→∞

‖T (uk)− y‖Y = 0

なる y ∈ Y を y = T̃ (u) と定義する. 線形性は明らかである. また

‖T (uk)‖ ≤ ‖T‖B‖uk‖X

においてノルムの連続性により ∥∥∥T̃ (u)∥∥∥ ≤ ‖T‖B‖u‖X

を得る. したがって T̃ は有界で
∥∥∥T̃∥∥∥

B
≤ ‖T‖B. u ∈ D(T ) に対して点列 {uk} ⊂ D(T )

を uk = u (k ≥ 1) とすれば

T̃ (u) = lim
k→∞

T (uk) = T (u)

が成り立つ. また

‖T (u)‖Y =
∥∥∥T̃ (u)∥∥∥

Y
≤
∥∥∥T̃∥∥∥

B
‖u‖X

なので ‖T‖B ≤
∥∥∥T̃∥∥∥

B
.

� �
問題 4. 上の証明における T̃ の線形性を証明せよ.� �
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逆作用素� �
X,Y を線形空間とする. D(T ) ⊂ X とする. T : D(T ) → Y が単射のとき T の逆写
像 T−1 を定義できる. D(T−1) = R(T ) となるa. T−1 は次の関係式をみたすもので
ある.

T−1 (T (f)) = f (f ∈ D(T )),

T
(
T−1(g)

)
= g (g ∈ R(T )).

aR(T )：T の値域.� �� �
定理 21 (逆作用素の線形性). 線形空間X,Y とする. 線形作用素 T : D(T ) → Y

は単射であるとする. このとき, 逆作用素 T−1 が定義できる. T−1 は線形作用素と
なる.� �
証明. f, g ∈ R(T ) であれば α, β ∈ K に対して αf + βg ∈ R(T ) となる*5. このとき T

の線形性により

T
(
T−1(αf + βg)

)
= αf + βg

= αT (T−1(f)) + βT (T−1(g))

= T
(
αT−1(f) + βT−1(g)

)
.

T は単射なので

T−1(αf + βg) = αT−1(f) + βT−1(g).

作用素の冪乗� �
T ∈ L(X) に対して T k (k ≥ 1) を

T k(f) = T
(
T k−1(f)

)
(f ∈ X),

T 0(f) = I(f) (f ∈ X)

と定義する.� �
ノイマン級数と呼ばれる定理を紹介する. 等比級数の和の公式

∞∑
k=0

rk =
1

1− r
(0 < |r| < 1).

との類似性に注意しよう.

*5u, v ∈ D(T )が存在して f = T (u), g = T (v)とかける. T の線形性により αu + βv ∈ D(T )であり
T (αu+ βv) = αT (u) + βT (v) = αf + βg ∈ R(T ).
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� �
定理 22 (ノイマン級数). T ∈ L(X) とする. ‖T‖L(X) < 1 ならば, 次のことが成り
立つ.

(i) R(I − T ) = X.

(ii) 逆作用素 (I − T )−1 ∈ L(X) が存在し

(I − T )−1 = I + T + T 2 + · · ·+ T j + · · · =
∞∑
k=0

T k.

また次が成り立つ.

‖(I − T )−1‖L(X) ≤
1

1− ‖T‖L(X)

.

� �
証明. ‖T‖L(X) < 1 なので∑∞

k=0 ‖T‖kL(X) < ∞.∥∥∥∥∥
k∑

j=0

T j −
l∑

j=0

T j

∥∥∥∥∥
L(X)

=

∥∥∥∥∥
k∑

j=l+1

T j

∥∥∥∥∥
L(X)

≤
k∑

j=l+1

‖T j‖L(X)

≤
k∑

j=l+1

‖T‖jL(X)

=
k∑

j=0

‖T‖jL(X) −
l∑

j=0

‖T‖jL(X) → 0 (k > l → ∞)

を得る. ここで‖T (f)‖X ≤ ‖T‖L(X)‖f‖X を繰り返し用いた. これより点列
{∑k

j=0 T
j
}∞

k=0
⊂

L(X) はコーシー列. L(X) は完備なので S ∈ L(X) が存在し

lim
k→∞

k∑
j=0

T j = S.

TS = ST =
∞∑
j=0

T j+1 =
∞∑
j=0

T j − I = S − I.

したがって

I = (I − T )S = S(I − T )
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を得る. これは

S =
∞∑
j=0

T j = (I − T )−1

を意味する. また

∥∥(I − T )−1
∥∥
L(X)

=

∥∥∥∥∥
∞∑
j=0

T j

∥∥∥∥∥
L(X)

≤
∞∑
j=0

∥∥T j
∥∥
L(X)

≤
∞∑
j=0

‖T‖jL(X)

=
1

1− ‖T‖L(X)

.
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第8章 一様有界性の原理

ベールのカテゴリー定理� �
定理 23 (ベールのカテゴリー定理). 完備距離空間 (X, d) とする. {Xk}∞k=1 ⊂ X を
閉集合とする. X =

⋃∞
k=1 Xk ならば j = 1, 2, . . . が存在しXj はX の開球を含む.� �

証明. 結論を否定する. するとX1 は開球を含まないのでX1 6= X. よって f1 ∈ X \X1

が存在する. X1 は閉なので

d1 ≡ inf
f∈X1

d(f1, f) > 0

が成り立つ*1.

B1 = Bρ1(f1), ρ1 = min(1, d1/2)

とおくとB1∩X1 = ∅. X2 は開集合を含まないのでB1 \X2 6= ∅ である*2. f2 ∈ B1 \X2

をとる. 先ほどと同様に

d2 ≡ inf
f∈X2

d(f2, f) > 0.

また f2 は開集合の元なので f2 6∈ X \B1 （閉集合）だから

d2
′ ≡ inf

x∈X\B1

d(f2, f) > 0.

B2 = Bρ2(f2), ρ2 = min(1/2, d2/2, d2
′)

と開球B2 を定めるとB2 ⊂ B1. 以下同様に

(i) B1 ⊃ B2 ⊃ · · ·

(ii) Bk ∩Xk = ∅

*1実際に, inff∈X1
d(f1, f) = 0 であれば下限の特徴づけにより任意の k ≥ 1 に対して fk ∈ X1 が存在

し d(f1, fk) < 1/k が成り立つ. このことは fk → f1 を意味しX1 が閉なので f1 ∈ X1 となり矛盾するか
らである.

*2実際に, B1 \X2 = ∅ ならば f ∈ B1 は f ∈ X2 よって B1 ⊂ X2 をなり矛盾するからである.
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(iii) ρk ≤ 1/k

と定める. すると{fk}はコーシー列である*3. よってfk はf ∈ X に収束する. fk ∈ Bk だ
から f ∈ Bk.したがって f 6∈ Xk. k ≥ 1の任意性より f 6∈

⋃∞
k=1 Xk.これはX =

⋃∞
k=1 Xk

に反する.

一様有界性の原理� �
定理 24 (一様有界性の原理). X,Y をバナッハ空間とする. {Tλ}λ∈Λ ⊂ L(X,Y ) と
するa. 任意の f ∈ X に対して

sup
λ∈Λ

‖Tλ(f)‖Y < ∞

ならば

sup
λ∈Λ

‖Tλ‖L(X,Y ) < ∞.

a定義域がX, 値域が Y の有界線形作用素全体の集合を L(X,Y )とかくのであった.� �
証明.

Xj =

{
f ∈ X; sup

λ∈Λ
‖Tλ(f)‖Y ≤ j

}
(j = 1, 2, . . .)

とおく. Xj は閉集合である*4. 仮定よりX =
⋃∞

j=1 Xj. したがってベールのカテゴリー
定理より j0 ≥ 1 が存在しXj0 は開球を含む. すなわち適当な f0 ∈ X, ρ0 > 0 と j0 ≥ 1

に対してBρ0(f0) ⊂ Xj0 . 任意の f ∈ Bρ0(0) に対して f + f0 ∈ Bρ0(f0) なので

‖Tλ(f)‖Y ≤ ‖Tλ(f + f0)‖Y + ‖Tλ(f0)‖Y ≤ 2j0.

したがって任意の f ∈ X に対して µ = 2ρ0
−1‖f‖X とおくと µ−1f ∈ Bρ0(0) であるから

‖Tλ(f)‖Y = µ‖Tλ(µ
−1f)‖Y

≤ 2µj0

= 4ρ0
−1j0‖f‖X .

*3実際に, k < l とすれば fl ∈ Bk であり

d(fk, fl) ≤ ρk ≤ 1

k

となるからである.
*4実際に, {fk} ⊂ Xj は fk → f をみたすとする. このとき任意の λ ∈ Λ に対して ‖Tλf‖Y = ‖Tλfk +

Tλ(f − fk)‖Y である. したがって連続性により ‖Tλf‖Y ≤ j.
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右辺は λ に依存しないので

sup
λ∈Λ

‖Tλ‖L(X,Y ) ≤ 4ρ0
−1j0.

� �
定理 25 (バナッハ・スタインハウスの定理). X,Y をバナッハ空間とする. {Tk} ⊂
L(X,Y ) とする. 任意の f ∈ X に対して {Tk(f)} ⊂ Y が収束列であるとする.

T : X → Y を

T (f) = lim
k→∞

Tk(f)

で定めると T ∈ L(X,Y ) で

‖T‖L(X,Y ) ≤ lim inf
k→∞

‖Tk‖L(X,Y )

が成り立つa.

a下極限の定義は lim inf
k→∞

‖Tk‖L(X,Y ) = sup
k≥1

(
inf
j≥k

‖Tj‖L(X,Y )

)
= lim

k→∞

(
inf
j≥k

‖Tj‖L(X,Y )

)
である.

� �
証明. 仮定により {Tk(f)} が Y において収束列だから {‖Tk(f)‖Y } ⊂ R は収束列なので
有界列である. すなわち

sup
k≥1

‖Tk(f)‖Y < ∞

である. したがって一様有界性の原理により

sup
k≥1

‖Tk‖L(X,Y ) < ∞.

したがって

γ = lim inf
k→∞

‖Tk‖L(X,Y ) = lim
k→∞

(
inf
j≥k

‖Tj‖L(X,Y )

)
< ∞

なので, 任意の ε > 0 に対して L = L(ε) ≥ 1 が存在し l ≥ L ならば

inf
j≥l

‖Tj‖ < γ +
ε

2

が成り立つ. したがって特に l = L の場合は下限の特徴づけにより k1 ≥ L が存在し

‖Tk1‖L(X,Y ) < inf
j≥L

‖Tj‖+
ε

2
< γ + ε.

次に l = L+ 1 の場合も同様に k2 ≥ L+ 1 が存在し

‖Tk2‖L(X,Y ) < inf
j≥L+1

‖Tj‖+
ε

2
< γ + ε.
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以下, 同様に繰り返して {kl}∞l=L が存在し

‖Tkl‖L(X,Y ) < γ + ε

が成り立つ. {Tk} ⊂ L(X,Y ) の連続性とノルムの連続性により

‖T (f)‖Y = lim
l→∞

‖Tkl(f)‖Y .

上の不等式より

‖Tkl(f)‖Y < (γ + ε)‖f‖X

なので

‖T (f)‖Y < (γ + ε)‖x‖X .

したがって T ∈ L(X,Y ) で

‖T‖L(X,Y ) ≤ γ + ε.

ε > 0 の任意性より

‖T‖L(X,Y ) ≤ lim inf
k→∞

‖Tk‖L(X,Y ).

� �
定理 26. バナッハ空間X,Y とする. {Tk} ⊂ L(X,Y ) とする. 以下の条件 (i), (ii)

をみたすとする.

(i) M > 0 が存在し
sup
k≥1

‖Tk‖L(X,Y ) ≤ M.

(ii) 稠密な部分集合D ⊂ X が存在し, 任意の f ∈ D に対して {Tk(f)} は収束する.

このとき任意の f ∈ X に対して {Tk(f)} は収束する. さらに

T (f) = lim
k→∞

Tk(f)

と定義すると T ∈ L(X,Y ) で

‖T‖ ≤ lim inf
k→∞

‖Tk‖L(X,Y )

が成り立つ.� �
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証明. 任意の f ∈ X に対して {Tk(f)} ⊂ Y が収束することをいえば定理 25によって示
すべき主張が得られる. いまD の稠密性により, 任意の ε > 0 に対して g ∈ D が存在し

‖f − g‖X <
ε

3M

が成り立つ. また {Tk(g)} ⊂ Y は収束列なのでN = N(ε) ≥ 1 が存在し k, l ≥ N ならば

‖Tk(g)− Tl(g)‖Y <
ε

3
.

したがって k, l ≥ N ならば

‖Tk(f)− Tl(f)‖Y = ‖Tk(f) + Tk(g)− Tk(g) + Tl(g)− Tl(g)− Tl(f)‖Y
≤ ‖Tk(f − g)‖Y + ‖Tk(g)− Tl(g)‖Y + ‖Tl(g − f)‖Y
< ε.

� �
定理 27. バナッハ空間 X,Y, Z とする. T ∈ L(X,Y ), {Tk} ⊂ L(X,Y ) と S ∈
L(Y, Z), {Sk} ⊂ L(Y, Z) は

Tk(f) −−−→
k→∞

T (f) (f ∈ X),

Sk(g) −−−→
k→∞

S(g) (g ∈ Y )

をみたすとする. このとき

Sk (Tk(f)) −−−→
k→∞

S (T (f)) (f ∈ X).� �
証明. g ∈ Y とする. {‖Sk(g)‖Y } ⊂ R は収束列なので有界である. したがって一様有界
性の原理よりM > 0 が存在して

sup
k≥1

‖Sk‖L(Y,Z) ≤ M.

したがって

‖Sk (Tk(f)− S (T (f))) ‖Y = ‖Sk (Tk(f)− S (T (f))) + Sk (T (f))− Sk (T (f)) ‖Y
≤ ‖Sk (Tk(f))− Sk (T (f)) ‖Y + ‖S (T (f))− Sk (T (f)) ‖Y
≤ M‖Tk(f)− T (f)‖Y + ‖S (T (f))− Sk (T (f)) ‖Y
→ 0 (k → ∞).
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第9章 開写像の定理

記法� �
ノルム空間Z として a ∈ Z, r > 0 に対して

BZ(a, r) = {f ∈ Z; ‖f − a‖Z < r}

とかく.� �� �
補題 7. バナッハ空間X,Y とする. T ∈ L(X,Y ) とする. R(T ) = Y をみたすとき,

ρ > 0 が存在して

BY (0, ρ) ⊂ T (BX(0, 1))

をみたす.� �
証明.

Y =
∞⋃
j=1

TBX(0, j)

である*1. したがってベールのカテゴリー定理より j0 ≥ 1 と a ∈ Y, δ > 0 が存在し

BY (a, δ) ⊂ T (BX(0, j0)).

任意の y ∈ BY (0, δ) とする.

y = (y + a)− a

とかくと y+ a ∈ BY (a, δ), a ∈ BY (a, δ) なので点列 {yk}, {yk ′} ⊂ T (BX(0, j0)) が存在し

yk −−−→
k→∞

y + a,

yk
′ −−−→

k→∞
a

*1実際に R(T ) = Y だから y ∈ Y とすれば f ∈ X が存在し y = T (f) とかける. j0 ≥ 1 が存在し
f ∈ BX(0, j0) となるので y ∈ T (BX(0, j0)) ⊂

⋃∞
j=1 T (BX(0, j)). すなわち Y ⊂

⋃∞
j=1 T (BX(0, j)). 次に

y ∈
⋃∞

j=1 T (BX(0, j)) とすれば j0 ≥ 1 が存在し y ∈ T (BX(0, j0)). すなわち適当な f ∈ T (BX(0, j0)) に
対して y = T (f) とかける. したがって y ∈ Y となるので⋃∞

j=1 T (BX(0, j)) ⊂ Y.
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が成り立つ*2. したがって yk − yk
′ ∈ T (BX(0, 2j0)) ⊂ T (BX(0, 2j0)) となる*3. 閉集合は

収束列の極限点もその閉集合の元なので

yk − yk
′ −−−→

j→∞
y ∈ TBX(0, 2j0)

となる. したがって ρ = δ/2j0 とおけば

BY (0, ρ) ⊂ T (BX(0, 1))

である*4.� �
補題 8. バナッハ空間X,Y とする. T ∈ L(X,Y ) とする. R(T ) = Y をみたすとき,

η > 0 が存在して

BY (0, η) ⊂ T (BX(0, 1))

をみたす.� �
証明. 前の補題の ρ > 0 とする. y ∈ BY (0, ρ) とする. このとき ε1 = 1/2 に対して
f0 ∈ BX(0, 1) が存在して

‖y − T (f0)‖Y < ε1ρ

が成り立つ. y − T (f0) ∈ BY (0, ε1ρ) なので ε2 = 1/22 に対して f1 ∈ BX(0, ε1) が存在し

‖(y − T (f0))− T (f1)‖Y < ε2ρ

が成り立つ. これを繰り返して εj = 1/2j (j ≥ 0) とすると εk+1 = 1/2k+1 に対して
fk ∈ BX(0, εk) が存在して ∥∥∥∥∥y −

k∑
j=0

T (fj)

∥∥∥∥∥
Y

< εk+1ρ (0.1)

*2BY (a, δ) ⊂ T (BX(0, j0))だから y + a, aを閉集合 T (BX(0, j0))の元とみなして閉集合の特徴づけを
用いる.

*3適当な fkfk
′ ∈ BX(0, j0)に対して yk = T (fk), yk

′ = T (fk
′)とかける. このとき yk−yk

′ = T (fk−fk
′)

であり fk − fk
′ ∈ BX(0, 2j0)となる.

*4実際に y ∈ BY (0, ρ) ならば (2j0)y ∈ BY (0, δ) ⊂ T (BX(0, δ)) なので {gk} ⊂ BX(0, 2j0) が存在
し (2j0)y = limk→∞ T (gk). すなわち y = limk→∞ T

(
(2j0)

−1gk
) とかくことができ ∥∥(2j0)−1gk

∥∥
X

=

(2j0)
−1‖gk‖X < (2j0)

−12j0 = 1. すなわち y は T (BX(0, 1)) ⊂ T (BX(0, 1)) の極限点であるから y ∈
T (BX(0, 1)) である.
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を得る. こうして構成した点列 {fk} ⊂ X について∥∥∥∥∥
m∑
k=j

fk

∥∥∥∥∥
X

≤
m∑
k=j

‖fk‖X

≤
m∑
k=j

εk

≤
m∑
k=j

1

2k

→ 0 (j,m → ∞).

したがって, コーシーの判定法により
{∑j

k=0 fk

}∞

j=0
は収束するので

f =
∞∑
k=0

fk.

したがって T の有界性により

T (f) =
∞∑
k=0

T (fk) .

また

‖f‖X ≤
∞∑
k=0

‖fk‖X

≤ ‖f0‖X +
∞∑
k=1

1

2k

< 1 + 1 = 2.

したがって f ∈ BX(0, 2).また上の式 (0.1)において,任意の γ > 0に対してN = N(η) ≥
1 が存在し k ≥ N ならば∥∥∥∥∥T (f)−

k∑
j=0

T (fj)

∥∥∥∥∥ <
γ

2
, εk+1ρ <

γ

2

が成り立つ. したがって

‖y − T (f)‖Y =

∥∥∥∥∥y − T (f) +
N∑
j=0

T (fj)−
N∑
j=0

T (fj)

∥∥∥∥∥
Y

≤

∥∥∥∥∥y −
N∑
j=0

T (fj)

∥∥∥∥∥
X

+

∥∥∥∥∥T (f)−
N∑
j=0

T (fj)

∥∥∥∥∥
X

< ϵN+1ρ+
γ

2

< γ.
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以上により

y = T (f) ∈ T (BX(0, 2))

を得る. すなわち
BY (0, ρ) ⊂ T (BX(0, 2)).

したがって η = ρ/2 に対して

BY (0, η) ⊂ T (BX(0, 1))

が成り立つ*5.� �
定理 28 (開写像の定理). バナッハ空間X,Y とする. T ∈ L(X,Y )とする. R(T ) = Y

をみたすとき, 任意の開集合G ⊂ X に対して

T (G) ⊂ Y

は開集合である.� �
証明. 前の補題により η > 0 が存在し

BY (0, η) ⊂ T (B(0, 1))

が成り立つ. y0 ∈ T (G) とする. このとき f0 ∈ G が存在し y0 = T (f0). G は開集合なの
で δ > 0 が存在し

f0 +BX(0, δ) = {f0 + f ; f ∈ BX(0, δ)} ⊂ G

が成り立つ. 任意の y ∈ BY (y0, δη) とする. このとき y′ ∈ BY (0, δη) が存在し

y = y0 + y′

が成り立つ. したがって f ′ ∈ BX(0, δ) が存在して

y′ = T (f ′)

が成り立つ. したがって f0 + f ′ ∈ G であるから

y = y0 + y′ = T (f0) + T (f ′) = T (f0 + f ′) ∈ T (G).

すなわちBY (y0, δη) ⊂ T (G).このことはT (G) ⊂ Y が開集合であることを意味する.

*5r,R > 0 とする BY (0, r) ⊂ T (BX(0, R)) ならば α > 0 に対して BY (0, αr) ⊂ T (BX(0, αR)) が成り
立つ. 実際, y ∈ BY (0, αr)とすれば (1/α)y ∈ BY (0, r). このとき f ∈ BX(0, R)が存在し (1/α)y = T (f)
とかける. したがって y = T (αf)とかけるので y ∈ T (BX(0, αR)).
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� �
定理 29 (値域定理). バナッハ空間X,Y とする. T ∈ L(X,Y ) とする. T : X → Y

は全単射写像であるとする. このとき T−1 ∈ L(Y,X).� �
証明. 仮定より T−1 : Y → X は線形作用素である. 開集合 U ⊂ X とする.

A = {y ∈ Y ; T−1(y) ∈ U}

は

T (U) = {T (f); f ∈ U}

と一致する*6. 開写像定理より T (U) は開集合である. すなわち(
T−1

)−1
(U) = T (U)

は開集合. このことは位相空間論における連続写像の特徴づけにより T−1 : Y → X が
連続写像であることをいっている.

*6実際, y ∈ Aとすれば, y ∈ R(T ) = Y なので f ∈ X が存在し y = T (f) ∈ T (U). y ∈ T (U)とすれば
f ∈ U が存在し y = T (f)とかける. したがって T−1(y) = f ∈ U.
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第10章 閉グラフ定理

閉作用素� �
バナッハ空間X,Y とする. 線形作用素 T : D(T ) ⊂ X → Y が閉作用素であるとは
D(T ) がノルム

‖f‖D(T ) = ‖f‖X + ‖T (f)‖Y

を備えたバナッハ空間となることをいう. ノルム ‖ · ‖D(T ) をグラフノルムと呼ぶこ
とがある. T ∈ L(X,Y )は閉作用素である.� �� �
注意 10. 閉作用素の定義において, T は線形である以外に有界性は要請されていな
い. これに関しては後述, 定理 33 の閉グラフ定理と呼ばれるものがある.� �� �
定理 30 (閉作用素の特徴づけ). バナッハ空間X,Y とする. T が閉作用素であるた
めの必要十分条件は{fk} ⊂ D(T ), fk −−−→

k→∞
f ∈ X, T (fk) −−−→

k→∞
y ∈ Y

=⇒ f ∈ D(T ), T (f) = y

が成り立つことである.� �
証明. （必要性）T は閉作用素であるとし {fk} ⊂ D(T ) は

fk −−−→
k→∞

f ∈ X, T (fk) −−−→
k→∞

y ∈ Y

をみたすとする. このとき点列 {fk} ⊂ X, {T (fk)} ⊂ Y はそれぞれX,Y におけるコー
シー列であるから

‖fk − fl‖D(T ) = ‖fk − fl‖X + ‖T (fk)− T (fl)‖Y

により {fk} ⊂ D(T ) は D(T ) におけるコーシー列でもある. T は閉作用素のなので
fk −−−→

k→∞
f in D(T ) なる f ∈ D(T ) が存在する.

‖fk − f‖D(T ) = ‖fk − f‖X + ‖T (fk)− T (f)‖Y → 0 (k → ∞)
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なので極限点の一意性により y = T (f) である.

（十分性）{fk} ⊂ D(T ) を ‖ · ‖D(T ) のノルム収束におけるコーシー列とする. このと
き {fk} ⊂ X, {T (fk)} ⊂ Y はそれぞれX,Y におけるコーシー列である. 完備性により
f ∈ X, y ∈ Y が存在し

fk −−−→
k→∞

f, T (fk) −−−→
k→∞

y

が成り立つ. このとき仮定により f ∈ D(T ), T (f) = y なので

‖fk − f‖D(T ) = ‖fk − f‖X + ‖T (fk)− T (f)‖Y
= ‖fk − f‖X + ‖T (fk)− y‖Y
→ 0 (k → ∞).

すなわちD(T ) は ‖ · ‖D(T ) のノルム収束の意味で完備である.� �
定理 31. ノルム空間 X,Y とする. T : D(T ) ⊂ X → Y が閉作用素かつ T−1 :

R(T ) → D(X) が存在するならば T−1 も閉作用素である.� �
証明.

{yk} ⊂ R(T ), yk −−−→
k→∞

y ∈ Y, T−1(yk) −−−→
k→∞

f ∈ X

が成り立つとする. fk = T−1(yk), とすると T (fk) = yk である. したがって fk → f,

T (fk) → y が成り立っている. T は閉作用素なので f ∈ D(T ) かつ y = T (f) ∈ R(T ) で
ある. したがって f = T−1(y). このことは T−1 が閉作用素であることをいっている.� �
定理 32. X,Y をバナッハ空間とする. T : D(T ) ⊂ X → Y が有界線形作用素で
D(T ) が閉集合のとき T は閉作用素である.� �
証明. {fk} ⊂ D(T ) は fk → f ∈ X と T (fk) → y ∈ Y をみたすとする. D(T ) が閉集合
なので f ∈ D(T ) となる. したがって T (f) ∈ Y が定義される. このとき

‖T (f)− T (fk)‖Y ≤ M‖f − fk‖X → 0.

極限点の一意性により y = T (f).� �
定理 33 (閉グラフ定理). バナッハ空間X,Y とする. 閉作用素 T : D(T ) ⊂ X → Y

は
D(T ) = X

ならば有界線形作用素である.� �
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証明. Z を以下の様に定義する.

Z = {(f, T (f)) ∈ X × Y ; f ∈ X} .

このとき

‖(f, T (f))‖Z = ‖f‖X + ‖T (f)‖Y

はノルムとなる. T が閉作用素なのでZ はこのノルムに関して完備となる. 次に作用素
S : Z → X を

S ((f, T (f))) = f

で定める. このとき S : Z → X は有界線形作用素である. S 全単射である. したがって
値域定理により S−1 は有界線形作用素であるから, M > 0 が存在し

‖S−1(f)‖Z = ‖(f, T (f))‖Z ≤ M‖f‖X (f ∈ X)

が成り立つ. したがって

‖T (f)‖Y ≤ ‖(f, T (f))‖Z ≤ M‖f‖X (f ∈ X).

これは T の有界性をいっている.� �
一様有界性の原理, 開写像定理, 閉グラフ定理は関数解析の三大基本定理と呼ばれる
ことがある.� �
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第11章 共役空間, リースの表現定理

線形汎関数� �
K 上の線形空間X とする. A ⊂ X において定義された線形写像 f : A → K を線形
汎関数という.� �
有界線形汎関数・共役空間� �
K = R or C に対して f ∈ L(X,K) を有界線形汎関数という. このとき

X∗ = L(X,K)

とかきX∗ をX の共役空間というa. f ∈ X∗ のとき通常は

f : u 7→ f(u) ∈ K, y = f(u)

とかくが
f : u 7→ 〈f, u〉 ∈ K, y = 〈f, u〉

という記法を用いることがあるb. 文献によっては内積との混同を避けるために
〈f, u〉 = X∗〈f, u〉X とかくことがある.

a共役のことを双対, すなわち共役空間を双対空間という文献もある. 英語では conjugate spaceま
たは dual space.

bこの記法を用いる場合は f ∈ X∗ と u ∈ X が 〈f, u〉という形で対になっているのでX∗ をX の
双対空間という場合のいい方に合っているのである. その場合は議論の流れの中で f ∈ X∗を u ∈ X
の双対といったりする. あまり文章にかくことはしないかもしれない.� �� �
例 23. 開集合 Ω ⊂ Rn とする. X = L2 = L2(Ω) とする. 任意に φ ∈ L2 を固定す
る. fφ : L2 → C を

fφ(u) =

∫
Ω

u(x)φ(x)dx (u ∈ L2)

と定義する. このとき fφ はL2 上の有界線形汎関数であるa. すなわち fφ ∈ L2(Ω)
∗
.

a確かめることは演習とする.� �
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� �
定理 34 (リースの表現定理). X はヒルベルト空間であるとする. このとき任意の
f ∈ X∗ に対して v ∈ X が一意的に存在し

f(u) = (u, v)X (u ∈ X)

が成り立つ. さらに ‖f‖X∗ = ‖v‖X が成り立つ.� �
証明. 存在すること
f = 0 のときは v = 0 が存在して主張を得る. f 6= 0 とする.

N = {u ∈ X; f(u) = 0}

とする. このときN は閉部分空間である. 実際, f の線形性からN が線形構造をもつ
ことは明らかである. 次に {uk} ⊂ X は uk −−−→

k→∞
u ∈ X をみたすとする. このとき

0 = f(uk) −−−→
k→∞

f(u) なので f(u) = 0. このことは u ∈ N を意味するから閉集合の特徴
づけによりN は閉部分集合であることがわかった. f 6= 0 という仮定によりN 6= X な
ので射影定理より

X = N ⊕N⊥

とかける. v0 ∈ N⊥, v0 6= 0 をとると任意の u ∈ X に対して

f(v0)u− f(u)v0 ∈ N

であるから
(f(v0)u− f(u)v0, v0)X = 0

となる.

v = αv0, α =
f(v0)

‖v0‖2X
とおき, 上の式を ‖v0‖2X で割ると

f(u) = (u, v)X (u ∈ X)

を得る. 上で定めた v は f を表現する元のひとつである.

一意的であること
他にも v′ ∈ X が存在して所望の性質をみたすとする. このとき

〈f, u〉 = (u, v)X = (u, v′)X

が成り立つので
(u, v − v′)X = 0 (u ∈ X)
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をみたす. u の任意性より, とくに u = v − v′ とすれば ‖v − v′‖X = 0 より v = v′.

‖f‖X∗ = ‖v‖X であること
‖u‖X = 1 なる u ∈ X に対して

|f(u)| = |(u, v)X | ≤ ‖u‖X‖v‖X = ‖v‖X .

したがって
‖f‖X∗ ≤ ‖v‖X .

次に f(u) = (u, v)X において, とくに u = v/‖v‖X とすれば*1

‖v‖X =
|f(u)|
‖v‖X

= |f(u)| ≤ sup
∥u∥X=1

|f(u)| = ‖f‖X∗ .

以上により ‖f‖X∗ = ‖v‖X .� �
例 24. ヒルベルト空間X とする. このとき f ∈ X∗ に対して v ∈ X が一意に定ま
るのでヒルベルト空間においてはX∗ とX を同一視することができる. 例えば例 23

では φ ∈ L2(Ω) を固定して fφ ∈ L2(Ω)
∗ を定義できるので L2(Ω)

∗
= L2(Ω).� �� �

問題 5. ヒルベルト空間 X とする. リースの表現定理により f ∈ X∗ に対して
f(u) = (u, v)X (u ∈ X) をみたす v ∈ X が定まるので写像

φ(f) = v (f ∈ X∗)

が定義される. このとき φ : X∗ → X は全単射写像であることを証明せよ.� �

*1f(u) = ‖v‖X > 0 を得るので f(u) = |f(u)| となる.
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第12章 ハーン・バナッハの定理

用語の準備
順序集合� �
集合X が順序集合であるとは順序と呼ばれる関係≺ が定義され次の条件をみたす
ことをいう.

(i) すべての x ∈ X に対して x ≺ x.

(ii) x ≺ y, y ≺ z =⇒ x ≺ z.

(iii) x ≺ y, y ≺ x =⇒ x = y.

x ≺ y を y � x とかいても同じ意味である.� �� �
注意 11. 実数における不等号≤ を一般化したものが順序≺ である.� �� �
例 25. X を R の区間全体からなる集合とする. すなわち A ∈ X は A = (a, b) や
A = [c, d) などと表される区間である. 関係 ≺ を集合の包含関係 A ⊂ B が成り
立つときに A ≺ B と定義すると A ≺ B でも B ≺ A でもないことがある. 実際,

A = [0, 1], B = [1, 2] とすればA ≺ B でもB ≺ A でもない. このことは順序集合
において必ずしも順序が決まる訳ではないことをいっている.� �
全順序集合� �
さらに順序≺ が次の条件をみたすとき≺ を全順序といい, X を全順序集合という.

(iv) すべての x, y ∈ X に対して x ≺ y または y ≺ x の少なくとも一方が成り立つ.� �
極大元・極小元� �
A ⊂ X とする. α ∈ A がA の極大元であるとは

α ≺ x, α 6= x

をみたす x ∈ A が存在しないことをいう. 極小元も順序の向きを変えて同様に定義
する.� �
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上界・下界� �
A ⊂ X とする. α ∈ X がA の上界であるとは

x ≺ α (x ∈ A)

をみたすことをいう. A の上界が存在するときA は上に有界であるという. 下界も
順序の向きを変えて同様に定義する.� �
最大元・最小元� �
A ⊂ X とする. 上界 α ∈ X が α ∈ A となっているとき α をA の最大元といい

α = maxA

とかく. 最小限minA も同様に定義する.� �
上限・下限� �
A ⊂ X は上に有界であるとする. A の上界全体の集合

U(A) = {α ∈ X; x ≺ α (x ∈ A)}

の最小元が存在するときa

supA = minU(A)

と定義する. 下限も inf A も下界全体の集合の最大限が存在する場合には同様に定
義する.

a微分積分学において習う様に, 実数全体の集合X = Rにおいては上に有界な部分集合 A に対し
て U(A) の最小元が必ず存在する. それが実数の連続性公理である.� �
帰納的� �
順序集合X とする. 任意の空でない全順序部分集合a A ⊂ X に対して supA が存
在するときX は帰納的であるという.

a順序集合X の部分集合 Aで A においては順序≺ が全順序になっているとき Aを全順序部分集
合という.� �
ハーン・バナッハの定理
ここでは, 次のツォルンの補題は補題という名前でも証明を与えるものではなく, 公理
として扱う.

ツォルンの補題� �
順序集合X 6= ∅ が帰納的ならばX の極大元が少なくともひとつ存在する.� �
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� �
定理 35 (ハーン・バナッハの定理). K = R 上の実線形空間X とする. p : X → R
を次の条件 (i), (ii)をみたす写像とする.

(i) p(λx) = λp(x) (x ∈ X, λ > 0).

(ii) p(x+ y) ≤ p(x) + p(y) (x, y ∈ X).

G ⊂ X を部分空間とし f : G → R を

f(x) ≤ p(x) (x ∈ G)

なる線形汎関数とする. このとき f : G → R のX への拡張, すなわち以下の条件を
みたす線形汎関数 F : X → R が存在する.

f(x) = F (x) (x ∈ G),

F (x) ≤ p(x) (x ∈ X).� �
証明. 準備
集合 P を次の様に定める.

P =

{
線形汎関数 h : D(h) → R

∣∣∣∣∣ 部分空間D(h) ⊂ X, G ⊂ D(h),

h は f の拡張で h(x) ≤ p(x) (x ∈ D(h))

}
.

P における順序≺ を

h1 ≺ h2 ⇐⇒
def

D(h1) ⊂ D(h2) かつ h2 は h1 の拡張

と定義する. f ∈ P なので P 6= ∅.

P は帰納的
P は帰納的である. 実際, Q ⊂ P を全順序部分集合とする. この集合を

Q = {hj}j∈J , hj ∈ P

と記すことにする. h を次の様に定義する.

D(h) =
⋃
j∈J

D(hj), h(x) = hj(x) (x ∈ D(hj)).

このとき h ∈ P であり h はQ の上界である. したがって, ツォルンの補題により P の
極大元 F ∈ P が存在する.

D(F ) = X
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D(F ) = X であることを証明しよう. このことが示されれば線形汎関数 F が所望の拡
張であるということになる. D(F ) 6= X であるとする. x0 6∈ D(F ) とする.

D(h) = D(F ) + x0R

とおく. α ∈ R が存在し x ∈ D(F ) に対して

h ∈ P,

h(x+ tx0) = F (x) + tα, t ∈ R

となる様にできる. それには

F (x) + tα ≤ p(x+ tx0) (x ∈ D(F ), t ∈ R)

を確かめれば良い. 性質 p(λx) = λp(x) (λ > 0) があるので{
F (x) + α ≤ p(x+ x0) (x ∈ D(F ))

F (x)− α ≤ p(x− x0) (x ∈ D(F ))

を示せば十分である*1. これには

sup
y∈D(F )

(F (y)− p(y − x0)) ≤ α ≤ inf
x∈D(F )

(p(x+ x0)− F (x))

と選べば良い. ここで

F (x) + F (y) = F (x+ y) ≤ p(x+ y)

≤ p(x+ y + x0 − x0)

≤ p(x+ x0) + p(y − x0) (x, y ∈ D(F ))

なので上の様な α は存在する. したがって F ≺ h, F 6= h となる. このことは F の極大
性に反する. 以上によりD(F ) = X である.

*1t = 0 のときは明らか. t > 0のときは p(x+ tx0) = p (t(x/t+ x0)) = tp(x/t+ x0) ≥ tF (x/t) + tα =
F (x) + tα. t < 0 のときは p(x+ tx0) = p (−t(−x/t− x0)) = −tp(−x/t− x0) ≥ −tF (−x/t)− (−t)α =
F (x) + tα.
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� �
定理 36 (ハーン・バナッハの定理の複素型). K = C 上の複素線形空間X とする.

p : X → C を次の条件 (i), (ii)をみたす写像とする.

(i) p(λx) = |λ|p(x) (x ∈ X, λ ∈ C).

(ii) p(x+ y) ≤ p(x) + p(y) (x, y ∈ X).

G ⊂ X を部分空間とし f : G → C を

|f(x)| ≤ p(x) (x ∈ G)

なる線形汎関数とする. このとき f : G → C のX への拡張, すなわち以下の条件を
みたす線形汎関数 F : X → C が存在する.

f(x) = F (x) (x ∈ G),

|F (x)| ≤ p(x) (x ∈ X).� �
証明. f を実部と虚部に分解すると

f(x) = g(x) + ih(x) (x ∈ G)

の形にかける. ここで線形汎関数 g : G → R, h : G → R であり

g(x) ≤ p(x), h(x) ≤ p(x) (x ∈ G)

をみたしている. f(ix) = if(x) なので

h(x) = −g(ix) (x ∈ G)

を得る. 実数値版のハーン・バナッハの定理を g : G → R に適用すると g は

Φ(x) ≤ p(x) (x ∈ X)

をみたす Φ : X → R に拡張される.

−Φ(x) = Φ(−x) ≤ p(−x) = p(x)

なので
|Φ(x)| ≤ p(x) (x ∈ G)

である.

F (x) = Φ(x)− iΦ(ix) (x ∈ X)
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が求めるものである. F の線形性は簡単に確かめられる*2. 次に x ∈ X に対してF (x) =

reiθ とあらわすと r = e−iθF (x) = F (e−iθx) は実数である. したがって

|F (x)| = |e−iθF (x)|
= |F (e−iθx)|
= |Φ(e−iθx)|
≤ p(e−iθx)

= p(x).

すなわち F は所望の線形汎関数である.� �
注意 12. X のノルム ‖ · ‖X は p の条件をみたす. ハーン・バナッハの定理を適用す
る際に p として適当なノルムを取ってくる場合がある.� �� �
定理 37. 線形空間X とする. 部分空間G ⊂ X とする. f : G → C をノルム

‖f‖B = sup
u∈G

∥u∥X≤1

|g(u)|

をもつ有界線形汎関数とする. このとき f の拡張 F ∈ X∗ が存在して

‖F‖X∗ = ‖f‖B

が成り立つ.� �
証明. p(u) = ‖f‖B‖u‖X , u ∈ X としてハーン・バナッハの定理を適用する. f の拡張
F が存在して |F (u)| ≤ p(u) = ‖f‖B‖u‖X . したがって

‖F‖X∗ ≤ ‖f‖B.

一方
‖F‖X∗ = sup

u∈X
∥u∥X≤1

|F (u)| ≥ sup
u∈G

∥u∥X≤1

|f(u)| = ‖f‖B.

� �
定理 38. 線形空間X とする. 任意の u0 ∈ X に対して f0 ∈ X∗ が存在して

‖f0‖X∗ = ‖u0‖X , f0(u0) = ‖u0‖2X .� �
*2演習とする.
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証明. 前の定理を

G = {u ∈ X; ∃λ ∈ C : u = λu0},
f(λu0) = λ‖u0‖2X

に対して適用する.� �
定理 39. ノルム空間X とする. u ∈ X に対して

‖u‖X = sup
∥f∥X∗≤1

|f(u)| = sup
∥f∥X∗=1

|f(u)|

が成り立つ.� �
証明. u = 0 のとき成り立つので u 6= 0 とする.

sup
∥f∥X∗=1

|f(u)| ≤ sup
∥f∥X∗≤1

|f(u)| ≤ sup
∥f∥X∗≤1

‖f‖X∗‖u‖X ≤ ‖u‖X .

前の定理により
‖f0‖X∗ = ‖u‖X , f0(u) = ‖u‖2X

となる f0 ∈ X∗ が存在する. したがって

f1 =
1

‖u‖X
f0

とおくと

‖f1‖X∗ = 1, f1(u) = ‖u‖X .

したがって

‖u‖X = f1(u) = |f1(u)| ≤ sup
∥f∥X∗=1

|f(u)| ≤ sup
∥f∥X∗≤1

|f(u)|.

以上により所望の等式を得る.
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第13章 第2共役空間

第 2共役空間� �
ノルム空間X とする. K に完備性があるので共役空間

X∗ = L(X,K)

はバナッハ空間である. したがってX∗ の共役空間も考えることができる. X∗ の共
役空間, すなわち

(X∗)∗ = X∗∗

を第 2共役空間という. X∗∗ はバナッハ空間である.� �� �
定理 40. ノルム空間X とする. X はX∗∗ の部分空間に同型であるa. すなわち, 単
射かつ ‖J‖L(X,X∗∗) = 1 なる J ∈ L(X,X∗∗) が存在する.

aノルム空間X,Y が同型であるとは ‖J‖L(X,Y ) = 1なる全単射写像 J が存在することをいう.� �
証明. 任意の u ∈ X に対し

gu(f) = f(u) (f ∈ X∗)

と定める. 明らかに gu は線形汎関数である. また

|gu(f)| ≤ |f(u)| ≤ ‖f‖X∗‖u‖X

なので gu はX∗ 上の有界線形汎関数である. すなわち gu ∈ X∗∗ で

‖gu‖X∗∗ ≤ ‖u‖X .

したがって
J(u) = gu (u ∈ X)

とすると J : X → X∗∗ は有界線形作用素である.

‖gu−v‖X∗∗ = ‖gu − gv‖X∗∗ ≤ ‖u− v‖X .

定理 38 で存在がいえる f0 ∈ X∗ に対して

f1 =
1

‖u‖X
f0
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とおくことで
‖f1‖X∗ = 1, f1(u) = ‖u‖X

なる f1 ∈ X∗ をみたす. したがって

gu(f1) = f1(u) = ‖u‖X ,
|gu(f1)| ≤ ‖gu‖X∗∗‖f1‖X∗ = ‖gu‖X∗∗

であるから
‖u‖X ≤ ‖gu‖X∗∗ .

こうして
‖J(u)‖X∗∗ = ‖u‖X

を得る. このことより
‖J‖L(X,X∗∗) = sup

u ̸=0

‖J(u)‖X∗∗

‖u‖X
= 1.

また J(u) = J(v) ならば

0 = ‖J(u)− J(v)‖X∗∗ = ‖u− v‖X

なので u = v を得る. したがって J は単射である.� �
注意 13. X ' R(J) と同一視するとX ⊂ X∗∗ である.� �
回帰的バナッハ空間� �
X = X∗∗ のときX を回帰的バナッハ空間という. 反射的バナッハ空間という文献
もある.� �� �
注意 14. ここでは結果だけ述べるが 1 < p < ∞ に対してX = Lp(Ω) とX = lp は
回帰的である. またそれぞれの共役空間X∗ は Lp(Ω)∗ = Lp′ , lp∗ = lp

′ である. ここ
で 1 < p′ < ∞ は 1/p+ 1/p′ = 1 をみたす.� �
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第14章 弱収束

バナッハ空間X における点列 {uk} ⊂ X が収束するとき, すなわち

uk −−−→
k→∞

u ∈ X

のとき任意の f ∈ X∗ に対して

〈f, uk〉 −−−→
k→∞

〈f, u〉

が成り立っている*1.

弱収束� �
点列 {uk} ⊂ X が u に弱収束するとは任意の f ∈ X∗ に対して

〈f, uk〉 −−−→
k→∞

〈f, u〉

をみたすことをいう. 通常のノルム収束のことを強収束という. 弱収束を強収束と
区別するために

uk ⇀ u (k → ∞)

とかweak（弱）の頭文字w をとって

w– lim
k→∞

uk = u

とかくことがある. 強収束の場合は strong（強）の頭文字 s をとって

s– lim
k→∞

vk = v

とかくことがある. 議論の文脈からどちらの意味での収束か明らかに思える場合は
収束の強弱の区別をかかないことがある.� �

*1汎関数を f(u)とかく記法においては f(uk) −−−−→
k→∞

f(u)のことである. 内積との類似性を強調したい
のでここでは 〈·, ·〉の記号を使う.
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� �
注意 15. 弱収束するとき弱収束先は一意的である. 実際, u, v ∈ X を {uk} の弱収
束先としよう. w = u− v とおく. このとき定理 38 により f0 ∈ X∗ が存在し

f0(w) = ‖w‖2X

が成り立つ. 一方でf0(u)とf0(v)は数列{f0(uk)} ⊂ K の極限値なのでf0(u) = f0(v)

である. したがって f0(w) = f0(u− v) = f0(u)− f0(v) = 0. 以上によりw = 0.� �� �
例 26 (弱収束し強収束しない点列の例). X = l2 とする. リースの表現定理により,

任意の f ∈ X∗ に対して b = {bk} ∈ L2 が存在し

f(a) = (b, a)l2 =
∞∑
k=1

bkak (a = {ak} ∈ l2)

とかける. l2 の点列 {a(j)} ⊂ l2 を j ≥ 1 に対して

a(j) = {δj,k}∞k=1

と定義するとa

f(a(j)) = (b, a(j))l2 =
∞∑
k=1

bka
(j)
k

=
∞∑
k=1

bkδj,k

= bj.

b ∈ l2 なので bj −−−→
j→∞

0 だから

f(a(j)) −−−→
j→∞

0.

すなわち {a(j)} は弱収束する. 任意の j > l ≥ 1 に対して

‖a(j) − a(l)‖l2 =

(
∞∑
k=1

|δj,k − δl,k|2
)1/2

=
√
2

なので強収束しない.

a元々が点列の空間なので, 点列の点列の様で少し分かり難いかもしれないが a(j)は j番目の項の
第 1の指数が j のクロネッカーのデルタである. ‖a(j)‖l2 =

(∑∞
k=1 |δj,k|2

)1/2
= 1.� �

一般に次がいえる.
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� �
定理 41. K 上の線形空間X とする. dimX = d < ∞ ならば弱収束と強収束は同
値である.� �
証明. 基底 {e1, e2, . . . , ed} を固定する. u ∈ X は

u =
d∑

j=1

cjej (cj ∈ K)

の形にかける. また
‖u‖X =

d∑
j=1

|cj|

はX におけるノルムとなる. 有限次元のノルム空間では任意のふたつのノルムは同値
であるから弱収束を仮定してこのノルムでの収束をいえればよい.

uk =
d∑

j=1

c
(k)
j ej

は u に弱収束すると仮定する. 1 ≤ j ≤ d とする. 考えている基底において u に係数 cj
を対応させる写像 fj : X → K を

fj(u) = cj

と定義すると fj ∈ X∗ をみたす. このとき fj ∈ X∗ に対して {fj(uk)} ⊂ K は fj(u) に
収束するので

|fj(uk)− fj(u)| = |fj(uk − u)|

=
∣∣∣c(k)j − cj

∣∣∣
−−−→
k→∞

0.

したがって
‖uk − u‖X =

d∑
j=1

∣∣∣c(k)j − cj

∣∣∣ −−−→
k→∞

0.

� �
定理 42. 点列 {uk} ⊂ X は u ∈ X に弱収束しているとする. このとき {‖uk‖X} は
有界列であり

‖u‖X ≤ lim inf
k→∞

‖uk‖X

が成り立つ.� �
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証明. 任意の f ∈ X∗ とする. このとき Tk を

Tk(f) = 〈f, uk〉

と定義する. Tk ∈ X∗∗ = L(X∗, K) である. {Tk(f)} ⊂ K は収束列である. 定理 40 に
より

‖Tk‖X∗∗ = ‖uk‖X

である. また任意の f ∈ X∗ に対して {|Tk(f)|} は有界なので

sup
k≥1

|Tk(f)| < ∞.

したがって一様有界性の原理により

sup
k≥1

‖Tk‖X∗∗ = sup
k≥1

‖uk‖X < ∞.

したがって {‖uk‖X} は有界列である. T を

T (f) = lim
k→∞

Tk(f) = lim
k→∞

〈f, uk〉 = lim
k→∞

Tk(f) = 〈f, u〉 (f ∈ X∗)

と定める. バナッハ・スタインハウスの定理により T ∈ X∗∗ であり

‖u‖X = ‖T‖X∗∗ ≤ lim inf
k→∞

‖Tk‖X∗∗ = lim inf
k→∞

‖uk‖X .

ここで定理 39 より

‖u‖X = sup
∥f∥X∗≤1

|〈f, u〉|

= sup
∥f∥X∗≤1

|T (f)|

= ‖T‖X∗∗

であることを用いた.� �
定理 43. ヒルベルト空間 X とする. {uk} が uk ⇀ u ∈ X (k → ∞) をみたし
‖uk‖X → ‖u‖X (k → ∞) のとき強収束の意味で uk → u ∈ X (k → ∞).� �
証明. 任意の f ∈ X∗ とする. このときリースの表現定理により v ∈ X が存在して

f(u) = (u, v)X (u ∈ X)

とかける. したがって uk ⇀ u (k → ∞) ならば

(uk, v)X −−−→
k→∞

(u, v)X .
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‖uk − u‖2X = (uk − u, uk − u)X

= ‖uk‖2X − (uk, u)X − (u, uk)X + ‖u‖2X
−−−→
k→∞

‖u‖2X − 2‖u‖2X + ‖u‖2X

= 0.
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第15章 共役作用素

ヒルベルト空間における共役作用素
L(X,Y )の場合
はじめから一般的な形で共役作用素を導入すると難しいのでヒルベルト空間における
共役作用素の易しい定義から導入しよう. 後でバナッハ空間では内積 (·, ·) ではなく双対
〈·, ·〉 を使って共役作用素が定義される.

ヒルベルト空間におけるL(X,Y )の共役作用素� �
ヒルベルト空間X,Y とする. T ∈ L(X,Y ) とするa. g ∈ Y を固定する.

Fg(u) = (T (u), g)Y (u ∈ X)

と定義すると明らかにFg ∈ X∗ となる. リースの表現定理によって f ∈ X が存在し

Fg(u) = (u, f)X (u ∈ X)

とかける. この f は g に対して一意的に決まるから

T ∗(g) = f

とかける. こうして

(T (u), g)Y = (u, T ∗(g))X

を得る. この様な T ∗ はリースの表現定理により存在が保証される. T ∗ を共役作用
素という. この定義の仕方においては T ∗ = T のとき T を自己共役作用素であると
いう.

aD(T ) = X なる有界線形作用素 T : X → Y の全体を L(X,Y )とかくのであった.� �
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� �
例 27 (転置行列). ヒルベルト空間X = R2 を考える. 有界線形作用素 T : X → X

とする. e1 = (1, 0), e2 = (0, 1) とする.

tjk = (T (ej), ek)X (1 ≤ j, k ≤ 2)

とおく. x =
∑2

j=1 xjej, y =
∑2

j=1 yjej とかくと. y = T (x) は

yk = (y, ek)X

=

(
T

(
2∑

j=1

xjej

)
, ek

)
X

=
2∑

j=1

xj (T (ej) , ek)X

=
2∑

j=1

tjkxj

と表される. こうして T の表現行列は

A =

(
t11 t21
t12 t22

)
.

T ∗ を求めたいので

sjk = (T ∗(ej), ek)X (1 ≤ j, k ≤ 2)

とおく. 条件

(T (x), y)X = (x, T ∗(y))X

に代入すると
2∑

j,k=1

tjkxjyk =
2∑

j,k=1

skjxjyk.

以上により tjk = skj. T
∗ の表現行列は

B =

(
t11 t12
t21 t22

)
= tA.

すなわち表現行列の意味において T ∗ = tT. D(T ) = D(T ∗) = X なので表現行列が
対称行列となるとき T は自己共役作用素である.� �
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� �
例 28 (積分作用素). Ω = (0, 1), X = L2 = L2(Ω) とする. k ∈ C(Ω× Ω) とする.

T (f)(t) =

∫
Ω

k(t, s)f(s)ds (f ∈ L2(Ω))

と定義すると T ∈ L(L2) となることは以前に確かめた.

(T (f), g)L2 =

∫ 1

0

(∫ 1

0

K(t, s)f(t)dt

)
g(s)ds

=

∫ 1

0

f(t)

(∫ 1

0

K(t, s)g(s)ds

)
dt.

一方 T ∗(g) = h とおくと

(f, T ∗(g))L2 =

∫ 1

0

f(t)h(t)dt.

したがって ∫ 1

0

f(t)

(∫ 1

0

K(t, s)g(s)ds− h(t)

)
dt = 0

が任意の f ∈ L2 に対して成り立つ. C∞
0 (Ω) ⊂ L2(Ω) なので変分法の基本補題に

より ∫ 1

0

K(t, s)g(s)ds− h(t) = 0.

したがって g ∈ L2(Ω) に対して　

(T ∗(g)) (t) = h(t) =

∫ 1

0

K(t, s)g(s)ds (t ∈ Ω)

と定めると T ∗ は共役作用素である. D(T ∗) = D(T ) = L2(Ω) である.� �
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� �
例 29 (フーリエ変換). X = L2 = L2(Rn) とする. フーリエ変換と呼ばれる線形作
用素 T : L2 → L2 を

lim
R→∞

∥∥∥∥T (u)− (2π)−n/2

∫
|t|≤R

e−is·tu(t)dt

∥∥∥∥
L2

= 0 (u ∈ L2)

と定義する. T ∈ L(L2) である. フーリエ解析によって

(T (u), v)L2 = (u, T−1(v))L2

であることが知られている. したがって T ∗ : L2 → L2 は

lim
R→∞

∥∥∥∥T−1(u)− (2π)−n/2

∫
|t|≤R

eis·tu(t)dt

∥∥∥∥
L2

= 0 (u ∈ L2)

によって定義される逆フーリエ変換である. すなわちT ∗ = T−1. D(T ) = D(T ∗) = L2

である.� �
ヒルベルト空間においてL(X,Y )でない場合
ヒルベルト空間における共役作用素� �
ヒルベルト空間X,Y とする. 線形作用素 T : D(T ) ⊂ X → Y とするa. D(T ) ⊂ X

は稠密, すなわちD(T ) = X とする. このとき

T ∗ : D(T ∗) ⊂ Y → X

を D(T ∗) =
{
g ∈ Y ; ∃f ∈ X : (g, T (u))Y = (f, u)X (u ∈ D(T ))

}
,

T ∗(g) = f (g ∈ D(T ∗))

と定める. すなわち g ∈ D(T ∗) に対して (g, T (u))Y = (T ∗(g), u)X と表される.

a有界とは限らない. 有界な場合も含まれる.� �� �
注意 16. f ∈ X は一意に定まる. 実際, もうひとつ f ′ ∈ X が存在するとすれば
D(T ) = X なので任意の u ∈ X に対して uk → u (k → ∞) なる {uk} ⊂ D(T ) が存
在するから 0 = (f − f ′, uk)X → (f − f ′, u)X = 0. したがって f = f ′.� �
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対称作用素� �
ヒルベルト空間X,Y とする. 線形作用素 T : X → Y が

D(T ) ⊂ D(T ∗), T (u) = T ∗(u) (u ∈ D(T ))

をみたすとき対称作用素という. すなわち

(T (u), v)Y = (u, T (v))X (u ∈ D(T )).

T ∗ は T の拡大となっている.� �
共役作用素のなかでも以下の様な特別なものを自己共役作用素という.

自己共役作用素� �
ヒルベルト空間X,Y とする. 線形作用素 T : X → Y が

D(T ∗) = D(T ), T (u) = T ∗(u) (u ∈ D(T ))

をみたすとき自己共役作用素という. すなわち

(T (u), v)Y = (u, T (v))X (u ∈ D(T )).� �
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� �
例 30 (掛け算作用素). X = L2 = L2(R) とする. 線形作用素 T : D(T ) ⊂ L2 → L2

を

D(T ) =
{
u ∈ L2; tu(t) ∈ L2

}
,

(Tu)(t) = tu(t) (t ∈ R)

と定める. 明らかに T は有界でない. D(T ) は稠密である. 実際, カットオフ関数

χk(t) =

{
1 (|t| ≤ k)

0 (|t| > k)

とすれば k ≥ 1 に対して χk ∈ D(T ). また任意の u ∈ L2 に対して

lim
k→∞

‖uχk − u‖L2 = 0.

T は自己共役作用素である. これを確かめてみよう

D(T ∗) =
{
g ∈ L2; ∃f ∈ L2 : (g, T (u))L2 = (f, u)L2 (u ∈ D(T ))

}
なのだから g ∈ D(T ) であれば

(g, tu)L2 = (tg, u)L2

なので g ∈ D(T ∗) となりD(T ) ⊂ D(T ∗). また上の計算により T ∗ = T である. 次に
v ∈ D(T ∗) とする. u ∈ L2 に対して (1/(t+ i))u ∈ L2 なので

(u, v)L2 =

(
t+ i

t+ i
u, v

)
L2

=

(
1

t+ i
u, (T ∗ − i)v

)
L2

=

(
u,

1

t− i
(T ∗ − i)v

)
L2

.

したがって

v =
1

t− i
(T ∗ − i)v.

これより T ∗v = tv ∈ L2 なので v ∈ D(T ). したがってD(T ∗) = D(T ).� �
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� �
例 31 (微分作用素). X = L2 = L2(R) とする. 線形作用素 T : D(T ) ⊂ L2 → L2 を

D(T ) =
{
u ∈ L2; sû ∈ L2

}
,

T (u) = F−1 [sû]

と定める. ここでフーリエ変換を用いた. T は有界でない. D(T ) は稠密である.

(T (u), v)L2 = (sû, v̂)L2 なので前の例と同じ様にして T は自己共役作用素であるこ
とがわかる.� �
バナッハ空間における共役作用素
バナッハ空間X,Y とする. 線形作用素 T : D(T ) ⊂ X → Y とする. D(T ) ⊂ X は稠
密, すなわちD(T ) = X とする. g ∈ Y ∗ に対してD(T ) 上の線形汎関数 f を

〈f, u〉 = 〈g, T (u)〉 (u ∈ D(T ))

とおく. もし f は有界であるときハーン・バナッハの定理により f はX 上の有界線形
汎関数F ∈ X∗ に拡張される. u ∈ D(T ) の場合F (u) = f(u) = 〈g, T (u)〉 となっている.

拡張F は一意的的である. 実際, もうひとつF ′ ∈ X∗が存在するとすればD(T ) = X な
ので任意の u ∈ X に対して uk → u (k → ∞)なる {uk} ⊂ D(T )が存在する. またD(T )

上 F = F ′ = f なので

0 = 〈f − f, uk〉 = 〈F − F ′, uk〉 → 〈F − F ′, u〉 = 0.

したがって F = F ′. 拡張した F を同じ記号 f とかくことにすると g ∈ Y ∗ に対して
f ∈ X∗ は

〈f, u〉 = 〈g, T (u)〉 (u ∈ D(T ))

をみたすものである*1. 以上の議論により, 共役作用素の定義をバナッハ空間へ一般化し
たものをまとめると以下の様になる.

*1この様に置いた f が有界な場合という前提のもと.



106 第 15章 共役作用素
バナッハ空間における共役作用素� �
バナッハ空間X,Y とする. 線形作用素 T : D(T ) ⊂ X → Y とする. D(T ) ⊂ X は
稠密, すなわちD(T ) = X とする. このとき

T ∗ : D(T ∗) ⊂ Y ∗ → X∗

を D(T ∗) =
{
g ∈ Y ∗; ∃f ∈ X∗ : 〈g, T (u)〉 = 〈f, u〉 (u ∈ D(T ))

}
,

T ∗(g) = f (g ∈ D(T ∗))

と定める. すなわち g ∈ D(T ∗) に対して 〈g, T (u)〉 = 〈T ∗(g), u〉 と表される.� �� �
命題 5 (D(T ∗)の特徴づけ). g ∈ D(T ∗) であるための必要十分条件はC = C(g) ≥ 0

が存在し

|〈g, T (u)〉| ≤ C‖u‖X (u ∈ D(T ))

が成り立つことである. すなわち

D(T ∗) =
{
g ∈ Y ∗; ∃C = C(g) ≥ 0 : |〈g, T (u)〉| ≤ C‖u‖X (u ∈ D(T ))

}
.� �

証明. （必要性）g ∈ D(T ∗) とすると条件をみたす f ∈ X∗ が決まるので
|〈g, T (u)〉| = |〈f, u〉| ≤ ‖f‖X∗‖u‖X .

すなわちC = ‖f‖X∗ . C は f を通じて g に依存している.

（十分性）u ∈ D(T ) に対して 〈f, u〉 = 〈g, T (u)〉 と f を定めると
〈f, αu+ βv〉 = 〈g, T (αu+ βv)〉

= 〈g, αT (u) + βT (v)〉
= α〈g, T (u)〉+ β〈g, T (v)〉
= α〈f, u〉+ β〈f, v〉.

また仮定により
|〈f, u〉| ≤ C‖u‖X

なので f はX 上の有界線形汎関数に拡張される. それを同じ記号 f とかけば f ∈ X∗.

以上により g ∈ D(T ∗).� �
定理 44. バナッハ空間X,Y とする. 線形作用素 T : X → Y とする. このとき T ∗

は閉作用素である.� �
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証明. {fk} ⊂ D(T ∗), fk → f ∈ Y ∗, T ∗(fk) → y ∈ X∗ を仮定する. このとき f ∈ D(T ∗),

y = T ∗(f) がいえれば良い. fk ∈ D(T ∗) なので

〈fk, T (u)〉 = 〈T ∗(fk), u〉.

k → ∞ として

〈f, T (u)〉 = 〈y, u〉.

このことは f ∈ Y ∗ に対して上の式をみたす y ∈ X∗ の存在をいっているので f ∈ D(T ∗)

を意味する. すると y = T ∗(f) となるので示すべきことがいえた.� �
定理 45. バナッハ空間X,Y とする. T ∈ L(X,Y ) ならば T ∗ ∈ L(Y ∗, X∗). さらに
‖T ∗‖L(Y ∗,X∗) = ‖T‖L(X,Y ).� �
証明. Step 1 D(T ∗) ⊂ Y ∗ は定義により明らかである. g ∈ Y ∗ とする. このとき任意
の u ∈ X に対して

|〈g, T (u)〉| ≤ ‖g‖Y ∗‖T‖L(X,Y )‖u‖X ≤ C(g)‖u‖X .

D(T ∗) の特徴づけにより g ∈ D(T ∗). 以上によりD(T ∗) = Y ∗.

Step 2 g ∈ Y ∗ = D(T ∗) とする. このとき u ∈ X に対して

|〈T ∗(g), u〉| = |〈g, T (u)〉| ≤ ‖g‖Y ∗‖T‖L(X,Y )‖u‖X .

したがって
‖T ∗(g)‖X∗ = sup

u ̸=0

|〈T ∗(g), u〉|
‖u‖X

≤ ‖g‖Y ∗‖T‖L(X,Y ).

よって T ∗ ∈ L(Y ∗, X∗) で ‖T ∗‖L(Y ∗,X∗) ≤ ‖T‖L(X,Y ). 定理 39 により

‖T (u)‖Y = sup
∥g∥Y ∗=1

|〈g, T (u)〉|

= sup
∥g∥Y ∗=1

|〈T ∗(g), u〉|

≤ sup
∥g∥Y ∗=1

‖T ∗(g)‖X∗‖u‖X

≤ sup
∥g∥Y ∗=1

‖T ∗‖L(Y ∗,X∗)‖g‖Y ∗‖u‖X

= ‖T ∗‖L(Y ∗,X∗)‖u‖X .

以上により ‖T‖L(X,Y ) ≤ ‖T ∗‖L(Y ∗,X∗).
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� �
定理 46. バナッハ空間X,Y, Z とする. このとき以下が成り立つ.

(i) (T + S)∗ = T ∗ + S∗ (T, S ∈ L(X,Y )).

(ii) (αT )∗ = αT ∗ (α ∈ K, T ∈ L(X,Y )).

(iii) (TS)∗ = S∗T ∗ (S ∈ L(X,Y ), T ∈ L(Y, Z)).� �
証明. 前の定理により (i), (ii) ではD(T ∗) = D(S∗) = Y ∗ である. g ∈ Y ∗ とする.

(i) 任意の g ∈ Y ∗ は g ∈ D(T ∗) ∩D(S∗) である. したがって以下の様に計算できる.

〈(T ∗ + S∗)(g), u〉 = 〈T ∗(g), u〉+ 〈S∗(g), u〉
= 〈g, T (u)〉+ 〈g, S(u)〉
= 〈g, (T + S)(u)〉 (u ∈ X).

このことは (T + S)∗ = T ∗ + S∗ を意味する.

(ii)

〈αT ∗(g), u〉 = α〈T ∗(g), u〉
= α〈g, T (u)〉
= 〈g, (αT )(u)〉 (u ∈ X).

このことは (αT )∗ = αT ∗ を意味する.

(iii) D(S∗) = Y ∗, D(T ∗) = Z∗ である. g ∈ Z∗ = D(T ∗) に対して T ∗(g) ∈ D(S∗) であ
る. したがって以下の様に計算できる.

〈(S∗T ∗)(g), u〉 = 〈S∗ (T ∗(g)) , u〉
= 〈T ∗(g), S(u)〉
= 〈g, T (S(u))〉
= 〈g, (TS)(u)〉 (u ∈ X).

このことは (TS)∗ = S∗T ∗ を意味する.
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第16章 レゾルベント

バナッハ空間X とする. 閉作用素 T : D(T ) ⊂ X → X とする. a ∈ C に対して, 線形
作用素方程式

T (u) = au (u ∈ D(T ))

を考える.

線形作用素の導入� �
線形作用素方程式に付随する作用素 Ta : D(T ) ⊂ X → X を

Ta = aI − T (a ∈ C)

と定義する.� �
レゾルベント集合とレゾルベント� �
レゾルベント集合 ρ(T ) を以下で定義する.

ρ(T ) =
{
a ∈ C; Ta が単射で Ta

−1 ∈ L(X)
}
.

また

R(a;T ) = Ta
−1 = (aI − T )−1 (a ∈ ρ(T ))

を T のレゾルベントというa.

a線形作用素の逆作用素は線形作用素である.� �
スペクトル� �
T のスペクトルを σ(T ) = C \ ρ(T ) と定義する.� �
点スペクトル� �
点スペクトル σp(T ) を以下で定義する.

σp(T ) =
{
a ∈ C; Ta が単射でない

}
.� �
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固有値・固有ベクトル� �
a ∈ σp(T ) を T の固有値という.

Ta(u) = 0

をみたす u 6= 0 を固有ベクトルという. a ∈ σp(T ) に対して

Wa =
{
u ∈ X \ {0}; Ta(u) = 0

}
を a に対する T の固有空間という.� �� �
定理 47 (レゾルベント方程式). このとき a, b ∈ ρ(T ) ならば

R(a;T )−R(b;T ) = −(a− b)R(a;T )R(b;T ).� �
証明.

R(a;T )(u) = (R(a;T )(bI − T )R(b;T )) (u)

= (R(a;T ) ((b− a)I + (aI − T ))R(b;T )) (u)

= (R(a;T )(b− a)R(b;T )) (u) + (R(a;T )(aI − T )R(b;T )) (u)

= (b− a) (R(a;T )R(b;T )) (u) + R(b;T )(u).

したがって

(R(a;T )(u)−R(b;T )) (u) = −(a− b) (R(a;T )R(b;T )) (u).

� �
問題 6. T : D(T ) ⊂ X → X が閉作用素ならば Ta = aI − T は閉作用素であること
を証明せよ.� �� �
定理 48. ρ(T ) は開集合である.� �
証明. a0 ∈ ρ(T ) とする. a ∈ BC

(
a0, ‖R(a;T )‖B−1) とする. このときR(a0;T ) ∈ L(X)

である. a ∈ ρ(T ) をいえばよい.

S ≡ (1 + (a− a0)R(a0;T ))
−1 R(a0;T )

=
∞∑
k=0

(−1)k(a− a0)
kR(a0;T )

k+1

= R(a0;T )
∞∑
k=0

(a0 − a)kR(a0;T )
k
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が成り立つ. ノイマン級数の定理により
∞∑
k=0

(a0 − a)kR(a0;T )
k = (1 + (a− a0)R(a0;T ))

−1 ∈ L(X)

であり

a0I − T : D(T ) → R(T ),

R(a0;T ) = (a0I − T )−1 : X → D(T ),

1 + (a− a0)R(a0;T ) : X → D(T ),

(1 + (a− a0)R(a0;T ))
−1 : D(T ) → X

だから S ∈ L(X), S(u) ∈ D(T ) (u ∈ X) である.

((aI − T )S)(u) = (a− a0)S(u) + (a0I − T )S(u)

= −

(
∞∑
k=0

(a0 − a)k+1R(a0;T )
k+1

)
(u) +

(
∞∑
k=0

(a0 − a)kR(a0;T )
k

)
(u)

= u.

同様に
(S(aI − T ))(u) = u.

したがって aI − T は単射で (aI − T )−1 = S. したがって a ∈ ρ(T ). また

R(a;T ) = R(a0;T )
∞∑
k=0

(a0 − a)kR(a0;T )
k

であることもいっている.

バナッハ空間値関数の正則性� �
開集合Ω ⊂ C とする. バナッハ空間 Z とする. f : Ω → Z が正則であるとは, 任意
の a ∈ Ω に対して ga ∈ Z が存在して

lim
h→0

∥∥∥∥f(a+ h)− f(a)

h
− ga

∥∥∥∥
Z

= 0

が成り立つことをいう.� �� �
定理 49. R(·;T ) : ρ(T ) → L(X) は正則であり

dR(·;T )
dζ

= −R(·;T )2

が成り立つ.� �
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証明. a ∈ ρ(T ) を固定する. ρ(T ) は開集合なので a の適当な r > 0 に対してBC(a, r) ⊂
ρ(T ). したがって ζ ∈ BC(a, r) に対して R(ζ;T ) は有界なので, レゾルベント方程式に
より

lim
ζ→a

‖R(ζ;T )−R(a;T )‖L(X) = 0

が成り立つ. すなわち連続である. h ∈ BC(0, r) とするとレゾルベント方程式により∥∥∥∥R(a+ h;T )−R(a;T )

h
−
(
−R(a;T )2

)∥∥∥∥
L(X)

=
∥∥R(a;T )2 −R(a+ h;T )R(a;T )

∥∥
L(X)

−−→
h→0

0.

f ∈ X∗ の有界線形性により次を得る.� �
定理 50. u ∈ X, f ∈ X∗ とする. このとき f (R(·;T )) (u) : ρ(T ) → C は正則であり

df (R(·;T )(u))
dζ

= −f
(
R(·;T )2(u)

)
が成り立つ.� �� �
問題 7. この定理を証明せよ.� �� �
例 32. X = C2 とする. T ∈ L(X) の表現行列を

A =

(
a11 a12
a21 a22

)

とする. aI − T が単射でないことは

ker(aI − T ) 6= {0}

と同値である. したがって
det(aE2 − A) = 0

と同値である. したがって a ∈ σ(T ) であることと a が行列A の固有値であること
は同値である.� �� �
問題 8. 線形作用素 T : X → X について

T は単射である⇐⇒ kerT = {0}

を示せ.� �
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� �
問題 9. 有界線形作用素 T : C2 → C2 の表現行列A について

ker(aI − T ) 6= {0} ⇐⇒ det(aE2 − A) = 0

を示せ.� �� �
例 33. X = C2 とする. T ∈ L(X) の表現行列を

A =

(
0 1

0 0

)

とする. このとき σ(T ) = {0} である. したがって r(T ) = 0 < ‖T‖L(X) = 1. また
ρ(T ) = C \ {0} でありR(a;T ) = (aI − T )−1 は表現行列が

(aE2 − A)−1 =
1

a2

(
a 1

0 a

)
(a ∈ ρ(T ))

で与えられる. すなわちR(a;T )(u) = (aE2 − A)−1(u) である.� �
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� �
例 34. ソボレフ空間H2 = H2(Rn) を

H2 =

u ∈ L2; ‖u‖H2 =
∑
|α|≤2

‖∂αu‖L2 < ∞


と定義する. H2 はバナッハ空間であることが知られている. D(T ) = H2 として

T (u) = −∆u

と定義する. ここで微分は超関数の意味での微分であるa. フーリエ変換Fとフーリ
エ逆変換F−1を用いて

T (u) = F−1M|ξ|2Fu

とかける. ここで掛け算作用素Mw : u 7→ wu である. 作用素 aI − T を考えること
にする. D(aI − T ) = D(T ) = H2 である. また

aI − T = F−1Ma−|ξ|2F

と表せる. a 6∈ [0,∞) として固定する. このときMa−|ξ|2 は有界な逆作用素

M(a−|ξ|2)−1

をもつ. 実際に∥∥M(a−|ξ|2)−1u
∥∥
L2 =

∥∥∥∥ 1

a− |ξ|2
u

∥∥∥∥
L2

≤ sup
ξ∈Rn

∣∣∣∣ 1

a− |ξ|2

∣∣∣∣ ‖u‖L2

だからである. したがって

Ga = F−1M(a−|ξ|2)−1F

は aI − T の有界な逆作用素である. Ga はグリーンの作用素とよばれる. したがっ
て a 6∈ [0,∞) のとき a ∈ ρ(T ) であり

R(a;T ) = Ga

である. a ∈ [0,∞) に対しても (aI − T )−1 = F−1M(a−|ξ|2)−1F は定義できるが
M(a−|ξ|2)−1 は有界でないb. したがって [0,∞) ⊂ σ(T ) である. 以上により σ(T ) =

[0,∞), ρ(T ) = C \ σ(T ).
a∂kuは φ ∈ C∞

0 (Rn)に対して ∫Rn(∂ku)(x)φ(x)dx = −
∫
Rn u(x)(∂kφ)(x)dxをみたすものとして

定義する.
b実際に n = 1 として u = χ[0,

√
a] とする.このとき

∥∥M(a−|ξ|2)−1u
∥∥
L2 =

∥∥∥∥ 1

a− |ξ|2
u

∥∥∥∥
L2

=

(∫ √
a

0

1

|a− |ξ|2|2
dξ

)1/2

≥ 1

2
√
a

(∫ √
a

0

1

(
√
a− ξ)2

dξ

)1/2

= ∞

となる.� �
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